Assessment 1 Report
Software Engineering Project (SEPR)

Team “EEP”

Richard Cosgrove, Yindi Dong, Alfio E. Fresta, Andy Grierson, Peter Lippitt, Stefan Kokov
Department of Computer Science
University of York

Table of Contents

1 Introduction
1.1 Single Statement of Need (SSON)
1.2 Stakeholders
1.3 Purpose
1.4 Objective and Scope

2 Requirement Considerations
2.2 Assumptions and dependencies
2.3 Constraints
2.3.1 Project Constraints
2.3.2 Design Constraints
2.3.3 Process Constraints

3 User Requirement Specification

4 System Requirement Specification
4.1 Functional Requirements
4.2 Non-Functional Requirements
4.3 Traceability Matrix

5 Use Cases
5.1 Starting a Game
5.2 Completing a goal
5.3 Winning a Game

6 Architecture

6.1 Game Architecture
6.1.1 Games and Players
6.1.2 Resources Inventory and Store
6.1.3 Regions, Vertices, Junctions and Stations
6.1.4 Trains, Running Status and Goals
6.1.5 Ages and Environment Obstacles

6.2 Network Architecture
6.2.1 Master/Slave Network
6.2.2 Network Technology

7 Planning
7.1 Team Roles
7.2 Software Engineering Approaches
7.3 Programming Languages
7.4 Collaboration and Other Software Tools
7.5 Gantt Chart

8 Risk Assessment

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 1 of 21

1 Introduction

1.1 Single Statement of Need (SSON)

Trains Across Europe (TaxE) is a competitive turn-based game. Two players take in turns to route trains
between different European cities to complete various game goals. Players may strategically use in-game
resources to meet these diverse goals. Upon a goal’s completion, the player is awarded a score based on their
efficiency and the goal’s difficulty. The player with the highest score after completion of all the goals is
considered to be the winner [Appendix A.2].

1.2 Stakeholders

Richard Paige, a computer science lecturer at the University of York, will be a direct stakeholder for the game
and our main client. We will be in constant communication with Richard, feeding back our progress and ideas
whilst acquiring his feedback to cater the game to his needs. We will make use of prototypes to demonstrate
possible game functionality. Our team shall also involve other potential users of the game as direct
stakeholders in providing input (e.g. through surveys) to improve the game. We may involve the other two
lecturers, Tim Kelly and Fiona Polack, as indirect stakeholders to advise our team on different aspects of the
project to do with the game or any group problems.

1.3 Purpose

The following requirements document constitutes an agreement between ourselves and our client as to what
the users of the game will require and what is needed from the proposed system to meet these requirements.

1.4 Objective and Scope

The objective of the project is to create a fun, playable game of TaxE for users to enjoy by the 29th April 2015
with the inclusion of other project deadlines throughout the year [Appendix A.1]. We are limited by some initial
game requirements defined in the assessment briefing [Appendix A.2]. Any further limitations through additional
requirements will be defined by the client throughout the software development process through meetings and
emails. We will provide the client with ideas for potential features within the game and acquire their feedback on
the idea, determining whether to include, adjust or not include in the game.

2 Requirement Considerations

2.2 Assumptions and dependencies

1. Users will run the game on a Windows or Linux operating system.

2. Users will have a mouse and keyboard when playing the game.

3. Users will a monitor of minimum size 1366x768, a standard laptop screen.

4. Users will have Java Runtime Environment installed on their operating system.

5. Users are expected to have at least played games before or be a ‘casual’ gamer.

2.3 Constraints

Before beginning to formulate specific requirements, we started to consider constraints that would be applied to
our project. These are based upon the assessment briefing [Appendix A] and practical considerations.

2.3.1 Project Constraints

Deadlines have been imposed by the direct stakeholder(s), as specified in the assessment briefing document.
Workload constraints exist due to the formation of our team:
1. All work on this project must be completed by only a team of six people, each with their own skillsets.
We are all 2" year computer science students with other study obligations alongside the software
engineering project.
2. Our team has never worked on a large scale software engineering project such as this before, hence
the project will be a learning experience for our team. This will mean our team will be working at a
slower pace than a team of experienced software engineers.
3. As time is a precious commodity throughout the project, each team member will be allocated a task
suitable to their skillset.

2.3.2 Design Constraints

1. The game is expected to be compilable and executable on any personal computer within the York
Computer Science labs that uses either Windows 7 or Linux Ubuntu 14.04 for its operating systems.
The game will need to be able to run on at least one operating system to be playable and, due to time

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 2 of 21

constraints, it might be too time consuming enabling the game to run on all platforms. In addition, the
game will be tested by the client on a university computer that contains Windows or Linux, hence it
would be best to make the game for one of these two operating systems.

The software resources we have available include any software available on the University of York’s
computers and any we may deem useful in aiding us to complete the project. The main programming
language of our game will need to be one covered by our team in the past, preferably Python (version
2.7.8) or Java (version 7) as these were taught to all Computer Science students. This would otherwise
take too much time and effort in making everyone learn a new language and potentially delay the
project.

Constraints specified in assessment briefing:
1.

N

No Ok

The game is expected to include at least 5 cities.

The game is expected to support at least two possible routes when routing a train between any two
cities.

The game is expected to support at least 10 different goals.

The game is expected to allow a player to have a maximum of 3 goals assigned simultaneously.

The game is expected to support at least 10 different resources.

The game is expected to support at least two junctions (routes that intersect).

The game is expected to have at least two different types of obstacle.

2.3.3 Process Constraints

The following constraints will be held throughout development of the system:

1.

We have chosen to use IEEE830 'Recommended Practice For Software Requirements Specifications'
[1] as a template for our requirements document.

We are to use the IEEE citation for any referencing made within our documentation.

We will follow the appropriate programming specification for our chosen language (Python [2] or Java

The system must be sufficiently documented such that a different team can continue developing for

2.
3.
(3]).
4,
assessment 3 and beyond.
5.

We are not allowed to pay people to do work for us. However, we are able to use freely available open
source libraries as part of our system.

3 User Requirement Specification

Description - Details of what both players (users) should be able to do within the game.
Necessity - The priority of involving the requirement in the game. The priority level has been agreed
with the client and is ranked in the following manner:

o Essential - A feature the game must have in order to be considered complete by the client

o Preferable - A feature the client would like in the game, but is not required

o Optional - A feature worth considering as a point of expansion for the game in the future.
Origin - Where the requirement originated from for backward traceability. As part of game research we
considered games, such as Civilization, and discussed different features with potential users to
discover what they thought about them. The features that our group or potential users felt would be a
good addition to the game were included in our user requirements. Evidence of interviews with the
client is included in the appendix.
Justification and possible alternatives - Reasons for involving the requirement, including an
investigation into possible alternatives.

UR No. | Description Necessity [Origin Justification, feasibility, possible alternatives
Menu Screens and
Starting a Game

1.1 Players must have Essential | Game We agreed with the client that a fundamental feature is
access to a menu research allowing players the freedom to enter the game via a menu
screen when initially and screen. Players may not yet be ready, and choose “How to
running the game interview play” the game or discover who made the game (credits).
application with the with client The alternative option would be to immediately place the
following navigation player into the game, which would likely cause confusion and
options e.g. (1) Play annoyance for the player.
Game, (2) How to Play,
(3) Credits, (4) Quit

1.2 Players must be able to | Essential | Game Based upon research into other games, we settled on
play on a network research creating a network based game. This allows players in

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 3 of 21

against a player on a and different locations to play against each other and players can
different computer. interview explore the game world and strategize even when it is not
with client their turn. It will be kept simple to avoid adding unnecessary

complexity to the game with the help of programming
libraries. Alternatively, two players play on the same
computer (hotseat), which would require no networking.
However, both have to be present in the same room to play,
which can be hard to do regularly if the two players do not
live together or nearby.

1.3 Players should be able | Preferable | Game Most multiplayer games allow a player to choose a nickname
to enter their nicknames research as it adds a level of personalisation to the player’s
to be used during the and experience. There is a risk of players choosing offensive
game. interview names, however. This could be mitigated through an

with client offensive language filter.

1.4 Players must be able to | Essential | Game We chose to create a simplistic lobby system where players
create a new game or research can either join another player's game or create their own
join an already created game. There is a risk the server may not be able to host too
one from a list of many games at once. A full lobby would require more
available games. functionality (e.g. sending and receiving game requests

between players) and take more development time. It is
possible to implement this in the future.

1.5 Players should have an | Preferable | Game The client suggested that each player should be able to
escape/pause game research pause the game if they need to take a break with a time limit
option which brings in case the player who pauses does not return. Not being
them to a menu with able to pause could mean the other player races ahead in
options e.g. the game and unfairly wins. To let the game progress at a
(1) Resume Game reasonable pace whilst still incorporating a pause function,
(2) How to Play limits to the duration and the frequency of the pauses could
(3) Save Game be implemented.

(4) Abandon Game

1.6 Players should be able | Preferable | Interview The client suggested this as a feature he would like to see in
to save and load games with client the game. This may take a significant amount of time to
so they can resume implement. Alternatively, we do not have to implement this
gameplay at a future requirement, resulting in our team spending less time
point. developing the game and not being as risky to implement. It

is a requirement to include if there is free time.

1.7 Players should be able | Preferable | Interview The client liked the idea of being able to pre-set the length of
to set the with client the game, e.g. how many objectives must be completed to
difficulty/length of the progress through each age within the game. To keep in line
game. with UR 1.4, players will only be able to join other players

who have chosen the same difficulty.
Turns and Train
Routing

2.1 Players must take it in Essential | Assessment | A player needs to know when it is their turn, as the
turns to play the game briefing alternative would result in a confusing game experience. The
and should know when turns could be taken within a time limit (e.g. 60 seconds) to
it is their turn. stop players delaying the game by taking too long with their

turn or moving away from their keyboard.

2.2 Players must start with | Essential | Interview We agreed with the client that the player cannot be placed in
one train at the with client a position where they cannot progress in the game.
beginning of the game. Therefore, the player needs to be able to start with a train in

order to start progressing.

2.3 Players must be able to | Essential |Assessment [We have chosen to use real city names and most likely
route a train between briefing capital cities for a more immersive experience, as players

the European cities
visible on a map; e.g.

should be familiar with them, and to fit with our historic
goal-driven story. The alternative would be to use fictional

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 4 of 21

London, Paris, Berlin,
Rome and Warsaw

cities, which would not fit within the historical theme of our
game.

2.4 Players should be able | Preferable | Interview The client liked the idea when we shared it with him. The
to purchase (using with client ability to purchase certain routes between cities would
resources) a contract, reward players for progressing through the game and leaves
giving them permission players with the strategic choice as to where to invest their
to send their trains resources. The alternative is to immediately give players
along specific routes. permission to use all available train routes, which seems less

interesting.

2.5 Players could be Optional Interview The client agreed it would make the game more interesting
allowed to have their with client and strategic for players to have stops in between the main
train stop by way-points cities (e.g. smaller cities). However, this would take more
between the routes time to develop and the assessment briefing states that
connecting cities. specifying advanced routings is optional.

2.6 Players must come Essential [Assessment | Keeping with the design constraints specified in the
across at least two briefing and | assessment briefing, the game should have at least two
junctions (train routes interview junctions. The junctions would allow players to alternate their
that intersect). with client route if they changed their mind.

2.7 Players must come Essential [Assessment | The game must have at least two different types of
across at least two briefing and [obstacles. We have chosen to link in this requirement with
different types of interview 2.6 to allow obstacles to impede players on junctions (e.g.
obstacles, in which one with client signals are not working). The client has requested fun and
must be a junction wacky obstacles, such as yetis in the colder regions of
failure. Europe and using the weather based on the region.

2.8 Players must be able to | Essential |Assessment | The assessment briefing and client have made it clear that
see all of their current briefing and [the player must be able to see the progress they are making
trains and their interview towards goals. Thus, players need to be able to keep track of
respective route and with client their trains’ movements in case they wish to change their
destination. route.

29 Players should be able | Preferable | Interview The client suggested that it would make the game more
to see all of their with client interesting for players to be able to make decisions based
opponents’ trains and upon what their opponents are doing. The alternative is to
possibly their respective require a player to buy upgrades in order to see what their
route and destination. opponent is doing or use a fog of war where the player has to

have “vision” over a region, however this would add greater
complexity to the game.

210 Players must be able to | Essential | Assessment | We consider the number of turns for a train to travel between
see how many turns it briefing cities to be a crucial part of the route’s description (required
would take a train to by assessment briefing). The alternative would be to leave
travel between any two the player guessing how long it would take to reach a
cities. destination, which would make it hard to plan their moves

and goals to complete.
Game Progression

3.1 Players must be Essential [Assessment | A player will only be assigned a new goal if they are within
assigned a new goal briefing the constraint of 3 goals simultaneously. The goals must be
each turn. They must be visible to ensure a player always knows what they should be
visible at all times during trying to do. The goals can be quantifiable (e.g. reach
the game. London from Paris in 3 turns) or absolute (e.g. send a train

from Berlin to Brussels).

3.2 Players could be able to | Optional | Interview The client suggested this as an idea to allow players to
choose a goal from a list with client choose whether to try and complete more challenging goals
of possible goals, and or stick with easier goals. Players need to be able to
also be able to abandon abandon goals in case they cannot complete a goal due to
current goals. insufficient resources.

3.3 Players must be given a | Essential | Assessment | Players will be given a score for completing a goal and will
score after completing a briefing be rewarded more points for goals that require more

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 5 of 21

goal. The score will be
based upon how
efficiently a goal was
completed and its
relative difficulty.

resources and time. The alternative would be giving players
the same reward for all goals, which would create no
incentive for players to choose harder goals or take more
risks in the game.

3.4 Players should progress | Preferable | Game The client really liked the idea of progressing through history
through different ages research during the game. Players are more immersed into the game
upon reaching minimum and through means of a historical story through the different
scores. E.g. the steam interview ages. Resources, trains and goals will be themed based
age will allow access to with client upon what age the player is currently in.
steam trains.

3.5 Players must be able to [Essential | Assessment | The assessment briefing states a player should be able to
see their current score, briefing see their score. We feel that being able to see your
and possibly their opponents score will make the game more competitive and
opponents too. exciting, something that the client desires. This could help

players strategise about their next move, whether to improve
their own score or try and delay their opponent.

3.6 Players’ games must Essential [Assessment | The assessment briefing states a player should win the game
end once either player briefing when all goals are completed. The alternative would be to
has completed their wait for both players to have completed their goals, which
goals. The player with would be boring for whichever player has to sit waiting for
the higher score wins. their opponent to finish.

Resources

41 Players must receive Essential | Assessment | In a similar way to other games, the client agrees with us that
two spendable briefing and [rewarding players who earn a higher score allows them to
resources (Gold and game experience more interesting gameplay. These spendable
metal in our case) each research resources are crucial to allow players to purchase more
turn. Players with a resources such as upgrades.
higher score will receive
more of both resources.

4.2 Players must be able to | Essential |Assessment | These upgrades and traps will meet the constraint of there
spend their gold in a briefing and | being at least 10 different resources and players will be
store where they can interview allowed to hold 7 at a time (5 minus the gold and metal). The
buy upgrades for with client client really liked the idea of players being able to choose
themselves and traps to what resources they would like to buy, rather than being
use against their allocated them randomly. A player may choose to purchase
opponent. The player resources to sabotage their opponents’ progress, or they
should have their may wish to try and speed up their own progression. This
resources stored for adds a greater element of strategy and competitiveness to
future use. the game, making a unique and diverse experience each

time.

4.3 Players should be able | Preferable | Interview Whilst the briefing does not specify there must be more than
to spend their gold and with client one train, we agreed with the client that it may make the
metal on buying new game more interesting if a player can control multiple trains
trains. at the same time. This would add an extra element of

strategy and uniqueness to each game.

4.4 Players must have their | Essential |Assessment | Once gold and metal have been spent or upgrade/traps have
resources removed from briefing been used, it would not make for interesting gameplay if

their inventory once they
have been spent or
used.

these same resources could keep being used.

4 System Requirement Specification

The system will need to meet the user requirements specified. To do this, our group has developed some
design decisions for our system. These requirements will be adhered to in the development process and used
to create a testing framework.

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 6 of 21

4.1 Functional Requirements

FR | Necessity | Description (Inputs and transformations) Invariants and Failures Meets

No. UR

1.1 | Essential The system shall provide a menu listing options System must always navigate to the | 1.1
which upon being selected [using mouse or screen the user requests.
keyboard] by a user will navigate them to the
required screen. The options will include:

e Resume - player navigates back to the
current game (if one has been started)

e Play Game - player navigates to server list
screen (if game has not yet been started)

e How To Play - player navigates to the game
manual

e Credits - player navigates to a screen with a
list of the people who created the game and
their respective roles

e Quit - player quits the game

1.2 | Essential The system shall use a server that acts as a relay If a player loses their connection the | 1.2
between two players, and will synchronise all the game must allow up to a minute for and
game variables between both players whenever a a connection to be re-established, 1.4
turn has been made. E.g. if player 1 has routed their | otherwise the disconnected player
train to a destination, then player 2’s map should will lose by default.
update to display this.

1.3 | Preferable | The system shall request players input a suitable Nicknames considered offensive will | 1.3
nickname when they are creating or joining a game, | be forbidden and blocked by a bad
which will be stored on the server and made visible language filter.
to both the player and their opponent throughout the
game.

1.4 | Essential The system shall allow players to connect to a Games which have been filled (i.e. it | 1.4
server which will output a list of available games and | has two players) must not be
the nickname of the player who created the game. displayed on the available games
The server shall act as an intermediary between list.
players, allowing them to add new games to the list
or join already created games.

1.5 | Preferable | The system shall allow a player to request the game | A player can only request the game 1.5
to be paused for a maximum of five minutes. Both be paused once during the game,
players’ game interfaces will be frozen until the otherwise they will not be allowed.
player has returned.

If the game is paused for longer than
5 minutes the game will continue
regardless of whether the player is
ready or not.

1.6 | Preferable | The system shall automatically save the game on The player should have no control 1.6
the server at every turn. The players shall be able to | on the auto saving functionality as
interrupt a game at any moment to continue at a this could make an unfair advantage
later time. The system shall keep track of started if a player could revert back to an
games and allow the players to choose a game to earlier save.
continue.

1.7 | Preferable | The system shall allow the host player to set the The host player cannot change 1.7
initial difficulty of the goals before the game starts difficulty once the game has started | and
(Easy, Medium and Hard initially, with potentially as this would be hard to implement. | 3.3

more later). The goals in game shall adjust in
difficulty depending on the distance between the two
cities in question and how realistically the

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 7 of 21

quantifiable value is achievable.

2.1 | Essential The system shall use a round-robin pattern to switch | A turn must never exceed 2 minutes | 2.1
between both player’s turn. It will follow this and a player must never have two
sequence: turns in a row.

(1) System determines the player to go first

(2) Player is given a maximum of 2 minutes to
make their turn - if they exceed the time limit
they forfeit their turn. They can also end
their turn before the time limit if they are
done by pressing “end turn” button.

(3) Next player is informed that it is their turn
and they are given 2 minutes.

2.2 | Essential The system shall assign both players a default The train will always be of the lowest | 2.2
starter train at the beginning of the game. quality in the starting age (e.g.

Steam train for Steam age).

2.3 | Essential The system shall allow players to select a train and A player can only select a train that 2.3
specify a city on a map where it should start and belongs to them. They can only
then the cities it should pass in order to reach its specify a route that is unlocked for
destination. The train’s route shall remain displayed | them - the system will block them
on the player’s interface. from making routings they do not

have permission to use.

2.4 | Preferable | The system shall allow players to buy contracts to Special routes must not be able to 24
use special routes that will be highlighted a different | be used if the player has not bought
colour on the map. The player will exchange gold for | them using gold.
the system to give them the ability to send trains
along these routes.

2.5 | Optional The system shall allow players to specify more The cities and their locations must 25
specific routes involving more than the 5 primary remain consistent for both players
cities in the game, e.g. smaller cities nearby to the throughout the entire game.
primary cities.

2.6 | Essential The system shall allow players to interact with at A player must be able to change 2.6
least two junctions, whereby a player will be given their route at a junction.
the choice of changing the routing of their train. If a
player chooses to change the routing the map will
update to reflect this.

2.7 | Essential The system shall use a random function such that Games that are of an easy difficulty | 2.7
there is a chance that when passing a junction a will have a 5% chance of a random
random obstacle will occur, e.g. the signals fail and obstacle occurring; medium difficulty
the player’s train is delayed for several turns. A will be 10%; and hard difficulty will
player will be informed when this has happened. be 20%.

2.8 | Essential The system shall show a player all their trains and A player must see their train at all 2.8
their respective locations on a map. Upon selecting times.

a train the player will be able to see the train’s
destination.

2.9 | Preferable | The system shall show a player all their opponents’ The system must make it easy to 2.9
trains and their respective locations on a map. distinguish between a player’s trains

and their opponents, e.g. opponents

trains could be highlighted red.
2.1 | Essential The system shall calculate how many turns it would | The number of turns calculated will 210
0 take a player’s train to travel between any two cities | always be a whole number. The

on the map. The result of this calculation will be
displayed to the player before they have confirmed

calculation must be consistent, such
that any player with the same train

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 8 of 21

their train’s route. and same routing would take the
same number of turns.

3.1 | Essential The system shall assign a player a new goal each The starting location of a goal must 3.1
turn, unless they already have the maximum of 3 always be a city where a player
goals. The goal will be visible on the player’s currently has a train stationary.
interface at all times.

3.2 | Optional The system shall allow a player to choose from a list | Player must remain within constraint | 3.2
which goal they are to be assigned. At the beginning | of 3 simultaneous goals. Players
of each turn a player may abandon a current goal must be able to abandon goals for
and choose a new one. which it is impossible for them to

complete.

3.3 | Essential The system shall calculate a score to award a player | Any player who completes any 3.3
upon their completion of a goal. E.g. specific goal with the same
Score = Goal difficulty coefficient / Number of turns efficiency must always receive the
to complete goal same consistent score.

3.4 | Preferable | The system shall allow players upon completing a The minimum goals required to 3.4
specific number of goals to progress through to a complete to progress to a new age
new age, which will have new goals with relevant must remain consistent for both
historical backstory and resources/trains available to | players throughout the game.
buy.

3.5 | Essential The system shall make both players scores clearly The score must be updated at the 3.5
visible at all times on their interface. end of each turn.

3.6 | Essential The system shall end the game once a player has The player must only win the game if | 3.6
completed a specific number of goals. The player all their goals are completed.
will be shown a congratulatory or consolation
message and then returned back to the menu.

4.1 | Essential The system shall grant each player two resources Gold and metal must be equal to a 4.1
(metal and gold) upon the start of their respective constant value multiplied by the
turn. The amount of gold and metal will be based player’s score.
upon the player’s score.

4.2 | Essential The system shall use a store to allow players to Purchased resource must be placed | 4.2 &
spend their gold on resources. Metal will be used in in player’s inventory over an empty 4.3
combination to purchase additional trains or train resource slot.
upgrades.

4.3 | Essential The system shall use an inventory system to allow Players must use a maximum of five | 4.2 &
players to store up to seven resources. additional resources and replace an | 4.3

empty slot with the purchased
resource.

4.4 | Essential The system shall remove resources once they have | Resource must be removed and 4.4
been used from the player’s inventory. replaced by an empty slot in the

inventory.
4.2 Non-Functional Requirements
NFR Description Function
No. Constrained
1 The list displaying available games should never be left out-of-date for longer than ten seconds, 1.4
i.e. it must periodically refresh at least every ten seconds.
2 A maximum of five seconds delay is allowed between each turn, e.g. for the system to calculate 1.2,2.1

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 9 of 21

the new location and trajectory of a train and to communicate this to the other player over the
server.

If a player loses connection from the server, the other player must be informed within 30 seconds | 1.2, 2.1
that connection has been lost.

The number of turns calculated for a train to travel between any two cities must always be an 2.10
integer.

All quantities of resources (e.g. gold, metal and boosts) should always be an integer. 41,4.2

4.3 Traceability Matrix

FR No. Starting/Joining | Turns and train Goals and score (Game Resources
a game routing (via a map) | Progression)

1.1 X

1.2 X X X X

1.3 X

14 X

1.5 X X X

1.6 X X

1.7 X X

21 X

2.2 X X

23 X

24 X X

25 X

26 X

27 X X

28 X

29 X

210 X

31 X X

3.2 X

33 X X

34 X X

35 X

36 X X

4.1 X X X

4.2 X X

4.3 X

44 X X

5 Use Cases

5.1 Starting a Game

Primary Actor: Charlie (Player)

Supporting Actor: Fred (Player), Game Server
Precondition: Charlie and Fred both have the game downloaded and installed on their respective computers.
Trigger: Charlie and Fred have both started the game application and navigated to the ‘Play Game’ menu
option.

Main Success Scenario:
Charlie’s and Fred’s interface displays an empty list of games to join - clearly indicating that nobody

1.

else has yet created a game for somebody to join.

Charlie decides that he will create a game, and presses a ‘Create Game’ button. He is given the option
of choosing the difficulty of the game, ‘Easy’, ‘Medium’ or ‘Hard’. He chooses to create an easy game.

Charlie starts waiting for somebody to join the game he has created.

Within ten seconds of Charlie creating a game, Fred’s interface is updated to show that a new game
has been created which is of easy difficulty and has been created by a player with nickname Charlie.

Fred decides to join the game by presses a ‘Join Game’ button.

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 10 of 21

6. Charlie is alerted that Fred has joined his game, and they are sent to a loading screen whilst the game

is prepared by the system.

7. Within ten seconds the game should have started.
Secondary Scenarios:

1.

Server is offline - Upon Charlie and Fred both pressing ‘Play Game’ they are both shown an error
message informing them that a connection cannot be made to the server hosting the list of games.
Charlie’s internet connection is down - Upon Charlie pressing ‘Play Game’ he is shown an error
message informing him that the game is unable to make a connection to the internet.

Charlie loses his internet connection after creating a game - Despite just joining the game that
Charlie has created, Fred is removed from the game and the game is removed from the list of available
games. Fred is informed that Charlie had lost connection.

Charlie and Fred both decide to create a game - Fred notices that Charlie has also created a game
and decides to delete his game and join Charlie’s game instead.

Success Postcondition: Charlie and Fred have both started a game against each other and the first player is
starting their turn.

5.2 Completing a goal

Primary Actor: Ben (Player)

Supporting Actor: Laura (Player)

Precondition: Ben and Laura have both successfully started a game against each other.
Trigger: Ben has been given the goal - “Transport soldiers from Paris to London”

Main Success Scenario:

1.
2,

Ben selects his stationary steam train, which he can clearly see on his map located in Paris.

The game asks him to select on the map where he would like to send his train and Ben selects on the
map London. He is informed that it should take approximately 4 turns to reach London from Paris using
a steam train. He confirms the routing.

His map is updated with a direct route from Paris to London glowing in green, so he can visibly see the
direction the train will be heading.

Ben’s 30 second turn is up and it becomes Laura’s turn, who is given a different goal to Ben.

Once Laura has completed her turn, Ben’s map updates to show his train is making progress along the
route from Paris to London.

This continues for two more turns, until Ben’s steam train finally reaches London successfully.

Ben is awarded 100 points for completing his goal, and he is assigned a new goal with a starting
location of London.

Secondary Scenarios:

1.

Ben comes across an obstacle - Upon reaching a junction an explosion causes damage to the track,
meaning Ben’s train is delayed for 2 turns until the track can be fixed. Once Ben finally reaches London
he is awarded a lower score due to taking longer to reach his destination.

Ben purchases a boost for his train using gold - The boost he purchases makes his train
temporarily faster, meaning he reaches London in only 2 turns rather than 4 turns. He is awarded a
higher score for reaching his destination more quickly. The boost is removed now that he has
completed his goal.

Laura purchases an impeder to sabotage Ben’s train - The impeder she purchases temporarily
slows his train down, meaning he reaches London in 6 turns rather than 4 turns. He is awarded a lower
score for reaching his destination more slowly. The trap is removed now that he has completed his
goal.

Laura wins the game - Before Ben can complete his goal, the game has ended and Laura has the
higher score and wins.

Laura pauses the game - Ben’s game is frozen and he is informed that Laura has paused the game
and a countdown timer is shown for 5 minutes. Laura returns after 2 minutes and the game is resumed.
Laura loses connection/quits the game - Ben is informed that Laura has lost connection and the
game must be abandoned.

Success Postcondition: Ben has completed the goal he was set and has been awarded a score.

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 11 of 21

5.3 Winning a Game

Primary Actor: Mark (Player)

Supporting Actor: Tom (Player)

Precondition: Mark and Tom both have the game downloaded and installed on their respective computers.
They also have started the game and played some turns.

Trigger: Mark only needs to complete one last goal to finish the current Age. It's Tom’s turn.

Main success scenario:

1. Tom sends two trains, one from London to Madrid and another from Munich to Rome. The turn ends;

2. Mark is asked to play his turn;

3. One of Mark’s trains end its journey achieving one of Mark’s final goal meaning Mark has progressed
beyond the final age of the game meaning the game is complete.

4. ltis clear that Mark has gained a higher score than Tom and therefore Mark is declared the winner and
Tom is consoled for his loss.

5. They both click on “Close”. This brings them back to the main game menu.

Secondary scenarios:

1. At the end of the game, Mark’s and Tom’s scores are identical - The game invites Mark and Tom
to play another turn until their score is different and a winner can be identified.

2. Despite Mark finishing all his goals first Tom still wins due to a higher score - Mark chose to
complete only easy goals whilst Tom decided to go for more difficult goals, meaning in the end Tom still
earned a higher score.

Success Postcondition: Once a player has completed all their goals (i.e. they have completed the final age)
the game decides who the winner is based upon who has the highest score.

6 Architecture

The architecture explains the structure and behaviour of a system. For our system, we will describe the main
concepts, the entities and the network architecture of our proposed system, justifying our design decisions
during the development process.

6.1 Game Architecture

The full UML class diagram for the proposed Architecture of the Game can be found at the end of the report. In
order to facilitate understanding of the architecture, the following sections refer to individual parts of the class
diagram.

6.1.1 Games and Players

The two main entities for a two-player game are the “Game” and the “Player”. The Game class represents any
current game being played by two Players which will hold all the information about the progress of the game,
such as the turn being played and its code (UID). The Player class represents the two players of the Game
which includes the properties of the Player’s nickname, their score and the number of objectives accomplished
by the Player.

Justification: A master “Game” class is needed as a unique point of access to all of the Game information and
will facilitate the collection of data exchanged in the network. Each Player will be able to edit its own Player
object by specifying their nickname and playing the game (e.g. by buying a resource or advancing an age).
Related Requirements: FR no. 1.2, 1.3 and 1.4.

6.1.2 Resources Inventory and Store

We classified Resource as any type of Spendable or Usable resource within the game. All Resources have a
short name and a description associated with them. The two Spendable Resources Gold and Metal are
essential elements of the game that can be used by the player. They are used to buy other Usable resources
when the player can afford them in the store.

All Usable Resources have a price property that is expressed in quantities of Gold and Metal, and are usable
on Trains of both players. For example, a Train Speed Modifier is a Resource that specifies a Speed Factor to
be applied on a train. Examples of Modifiers could either be a speed boost for a Player's own Train, or any

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 12 of 21

Impeder that slows down an opponent’s train. The Store class represents the in-game shop that contains a
collection of Usable Resources available for the Players to buy.

The “Inventory” of a Player is defined as the set of all the Resources currently owned by the Player - both those
that are currently being used and those that are not.

Justification: This Architecture allows us to have some common properties for objects that are very different
(e.g. Gold and a Speed Upgrade). The Store class is very helpful to keep a reference of all the available
Resources that can be bought in the Game.

Related Requirements: FR no. 4.1, 4.2, 4.3 and 4.4.

6.1.3 Regions, Vertices, Junctions and Stations

The Game’s map will be internally represented as an undirected weighted graph, a collection of Vertices and
Arcs. A Vertex in the map can either be a Station with a recognisable name (e.g. “London King’s Cross) or a
simple Junction.

A Route is an arc between two vertices and has a variable length that represents the distance between the two
vertices. This length will be used to calculate estimations for journey times in turns based upon a given train’s
speed, or calculate the shortest path between any two vertices in the graph whenever the Player decides to
move a train.

In order to make the game more interesting, we decided to introduce Regions. These will be areas of the map,
represented as collections of Vertices. Each vertex in the map will belong to one Region. The Regions of the
Game will have a name (e.g. North Europe or Britain) to categorise the Random Obstacle Events, so that the
game will be able to easily choose an adequate natural phenomenon or historical event for the region.
Justification: The nature of the railway network could not lead to anything other than having a graph and
separate classes. For simplicity, we decided to avoid including route directions, and instead decided that an
undirected graph will best fit our needs.

Related Requirements: FR no. 2.3, 2.5, 2.6 and 2.8.

6.1.4 Trains, Running Status and Goals

Goals represent the objectives that the Player needs to achieve in order to be awarded points, advance to the
next stage or age and finish the game. Each Goal has properties such as a general description, a reward in
score, an age of the game that the player needs to have reached before being assigned the Goal, and, more
importantly, at least two Stations that a Player’s train needs to start travelling at and end at to achieve the Goal.
All Goals need to be checked for accomplishment at the end of every turn.

Status represents the current position, if any, of a Train on the map, and its position relative to a journey. Itis
represented by a set of three elements: an ordered list of routes of the whole journey, a number that indicates
the current route of the list and a Route Completion figure that specifies at which point of the current route the
train is positioned.

The Train class is used to represent a single Player’s train. A train is strictly related to an Age (e.g. can either
be a Steam Train or an Electric Train), some properties such as a Make and a Model, a Base Speed (that can
be altered using an Upgrade) and when it was placed on the map, as opposed to being idle in the player's
Trains Depot. It also has a Status object representing the current position and route, if any.

Related Requirements: FR no. 2.3, 2.5, 2.8 and 2.10.

6.1.5 Ages and Environment Obstacles

The Age class represents an Age of the Game. An Age is related to a number of Random Obstacle Events that
can occur throughout the Game, while the Player is in that particular Age, and a set of Trains built during that
Age (e.g. Nuclear Trains for the Nuclear Age).

Random Obstacle Events have a description that can either be of a historic or natural event, which help to
compose the story of a particular Game. As a consequence of this, a Player’s Train would have a higher or
lower Speed Factor than its original value. The Obstacles are chosen randomly by the Game from the set of
obstacles based on a Player’s stage. The probability that a Random Obstacle Event occurs at each turn is
defined by the Game difficulty (higher difficulty meaning more probability). An event may affect a train for a
number of turns, and the “Turn Penalty Remaining” property keeps track of how many are needed for the effect
of the Obstacle to end.

Justification: The Game is based upon the concept of having a Player progress through different ages from
the past to a future to give the Players a sense of creating their own story and ideal train company. It can give

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 13 of 21

the player a sense of progression and satisfaction when seeing their train company grow from being recently
established to a monopoly (i.e. fully control the train business of Europe when they win the game). An
immersive story can keep Players playing the game, especially one which evolves, adapts and brings a unique
experience each time. This, in response, creates the need for an object that represents any playable Age which
can be used to classify a number of other entities in the game, such as Trains and Random Obstacle Events.
Related Requirements: FR no. 2.7.

6.2 Network Architecture

We decided to adopt a very simple Client-Server Network architecture to allow
Players to compete against each other in two-player. Games. We also want to
keep the Server architecture as simple as possible to avoid adding

/ \ unnecessary complexity to the Project.

The reason for choosing a Network solution is to allow the players to interact
without obligation to be in the same room and to provide more playing comfort,

removing the need for players to switch seats at the end of each turn.

Moreover, we decided for a Client-Server-Client infrastructure to remove the
need for the User to carry out any network configuration (e.g. setting up port forwarding for playing via the
Internet or remembering a long IP to connect to an opponent). In fact, assuming the Server is always active and
reachable via a known host address, the Players will only require an Internet connection which is required to
access the game website in the first place. After establishing the communication link, the Server will pair the
Players and forward any game data each Player sends to the other one.

6.2.1 Master/Slave Network

In order to keep the Server architecture very simple, and to keep the Server ignorant of the actual Game logic,
we chose a Master-Slave network architecture. In our architecture, the server’s only duty is to facilitate data
exchange between the two players. All of the Game computation (e.g. creating the Game’s initial environment,
calculate score, random obstacles, etc.) is done by one of the two Game clients which will be called the
“Master” Client.

When the game is started, one of the two Players’ Clients is designated as the Master Client (host) and the
other as the Slave Client. The Slave Client’s Player will always play the first half of each turn, sending the move
data to the Master Client through the server. The Master Client will then wait for the local Player to move,
compute any end of turn calculations (the end of turn scores, assign resources, environment obstacles and so
on), and communicate this computed game data to the other player. This process will then repeat until the
game eventually finishes.

The following UML Sequence Diagram describes the interactions between the Players, their respective Game
Clients and the Server when Starting a game:

7 playerl : Player ‘ = clientl : GameClient ‘ ‘ & server : GameServer ‘ & client2 : GameClient t player2 : Player
T

T
I
i
! Start Game |

8, Create Game ("CG", GameData-L

Il

B Join a Game
o
8 List Games ("LG")
+--{ (GamelD, GameName), ... }
i
i
i
i

+:-(GamelD, GameName)

«--Games List

1)

|
I
I
I
i
i
})
-
| ‘ B Choose Game
| -t
8§, Join Game (")G", GamelD, Player2)

4--Game Start, Please Wait +--Game Start ("GS", Player2)

i
| l
T
} } - Gan‘ﬂs Start, Please Play ("PP", GameData)
i i i
i i i
I I I
I l l

Successively, while the game is in progress, the process described in the following UML Sequence Diagram is
repeated, until the Game is finished.

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 14 of 21

2 clientl : GameClient & client2 : GameClient

T T
=) Iooplp :
2] [ncilt game.hasFinished()] U B Please Play ("PP", GameData)
|
|
I
-

|- |-

|
|
|
i
! & Move ("M", GameData)
|

I

ol

B Please Play ("PP", GameData)

@ End Turn ("ET", GameData)

6.2.2 Network Technology

While in the process of choosing the Network technology to adopt for the Game, we thought of the following
requirements we needed it to satisfy:

e We need a Network technology that is simple for the Player to set up (does not need any configuration
or have any particular requisite apart from a working Internet connection);

e We need a Network technology that allows real time communication. This is because Players will play
in turns and expect the system to be ready right after the opponent plays. Examples could be TCP and
UDP sockets, as opposed to pull-type communication over HTTP requests;

e We need a Network technology that takes care of data loss, data integrity check and retransmission.
As we don’t have enough resources to build it ourselves, our options are narrowed to those based on
the TCP protocaol;

e We need a Network technology that is able to check the health of the connection, quickly detect
disconnection, attempt to reconnect automatically in case of a temporary network failure and, when
reconnection is not possible (e.g. when a client goes offline, or the Wi-Fi is disconnected for a long
time), promptly notify the server and the other player of the event;

After considering a couple of options, we decided on Socket.io [7] as our network infrastructure framework.
Socket.io is an open source project [8] built on top of various technologies such as TCP sockets. It will allow us
to create a simple Server application with NodedS, an interpreter for the JavaScript language, while taking
away all of the complexity that generally comes with a network application. The underlying framework of
NodedS will take care of all low-level duties such as keeping connections alive, correcting data-transmission
errors and catching disconnection events.

Many widely-used and tested implementations for Socket.io already exist for the language of our Game, Java
[9]. Being very famous in the open source community, it also comes with excellent community support and,
hence, lower risk for us in the adoption of an external library.

7 Planning

7.1 Team Roles

Within any software engineering project, there are team roles allocated to individuals. The team roles tend to be
based on their technical or leadership abilities, hence our team will replicate the same idea. Distributing team
roles will help each team member focus on a particular aspect of the game and be able to continually progress
without becoming lost or unsure with what to do next. Team members could be allocated tasks outside their
role if more team members are required due to a lack of time or a high workload for a particular task. The team
roles are based on those specified in OpenSeminar [6] as follows:

e Team Leader, Andrew Grierson - Andrew has previous experience in leading teams in projects through
the HACS module from first year to relatively high standard. The team leader role may rotate round to
another team member if someone is more knowledgeable on a particular task. The team leader role will
coincide with being the secretary and the Scrum master (removing any impediments).

e Technical Lead, Alfio Fresta - Alfio has previous experience in using the proposed collaboration tools
and vast amounts of knowledge in the hardware and software fields by learning in his spare time. He is
the person to go to for any technical problems within the project, such as how a particular feature could
be made, and knows about any hardware or software we may need for our project.

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 15 of 21

e Designer, Stefan Kokov - Stefan has previous experience in creating project plans through the HACS
module and is familiar in breaking up a project into allocated slots with their priorities and
dependencies.

e Lead Programmers, Alfio Fresta and Peter Lippitt - Alfio and Peter have vast amounts of knowledge in
the programming field. Having two lead programmers will allow our team to split into at least two
different areas to program such as one sub-team working on the gameplay and another on the map.

e Technical Directors, All - All team members will write the documentation in relation to their given task, if
appropriate. Every team member will review all pieces of work before an assessment date.

e Configuration Management, Stefan Kokov. Maintaining the code base - Stefan has knowledge in
maintaining working environments for projects in the past.

e Quality Assurance, Richard Cosgrove - Richard has knowledge in maintaining code and is most
familiar with the requirements specification.

e Lead Atrtist, Yindi Dong - Yindi has a large amount of knowledge in the creative and artistic fields.

In addition, each team member has been placed into a pair to help keep each other focused on their task and to
catch up their work if they happen to be unavailable for a particular reason. This would help the project to not
be delayed for extended periods of time, increasing the amount of time to improve the quality of our work and
keep to the specified deadlines. The pairs are as follows: Andrew Grierson and Richard Cosgrove, Peter Lippitt
and Yindi Dong, Alfio Fresta and Stefan Kokov.

7.2 Software Engineering Approaches

Before we can progress into the main development of the project, we need to investigate different software
engineering approaches and conclude which would be most suitable to our project needs.

The first software engineering approach we considered was the plan-driven method using IBM’s Rational
Unified Process (RUP) [4]. The plan-driven method involves a planned route to take throughout the software’s
life cycle. The user requirements are defined before starting the project and are taken into account at each
stage of the lifecycle, however, this approach is best in a stable environment with a clear model of the end
product. As the project will involve a lot of communication with the direct stakeholder about their ideas for the
game and ours, the requirements may alter a lot over the development of the software and can be sudden,
creating an unstable environment. Implementing a requirement change into an existing model would be
possible in RUP, but could end up being complex and many changes would disrupt the entire process in
changes to the contract, according to Boehm [5]. The entire project will also be documented for future reference
and for other assessments when passing our finished project onto other teams to help them understand and
assess our work.

The second software engineering approach we considered was the agile method using the Scrum approach.
The agile method’s main focus is on the client throughout the software development cycle. It involves short
iteration cycles called “sprints” which require an initial sprint meeting to understand what work needs to be
completed, daily sprint meetings to acquire updates on how the work is progressing and sprint reviews to
acknowledge what we have completed. These meetings will help our team develop the software at a regular
pace by collaborating routinely with each other in accordance with the client. We can also allocate tasks
appropriately to work in parallel with one another and merge and review our work continuously throughout to
make sure we are thinking similarly and producing a high quality piece of work. As the requirements are more
volatile with a client being progressively involved, the Scrum method would allow much easier backtracking if
additional requirements are acquired or any need updating.

The final software engineering approach we considered was the incremental build model using a waterfall
model. The idea is to follow a strict sequence of stages throughout development: Planning, Analysis, Design,
Code, Test and Maintenance. This will be easier in understanding what needs to be completed next in the
project life cycle, but makes it not as flexible when planning the project. The client can review and provide
feedback at any stage, however, any additional functionality to the game may cause errors in the
documentation in relation to the system architecture. It is much harder for us as developers to backtrack and
make changes if required.

To conclude, our group has decided to use the Scrum agile software development method due to its flexibility
when adapting to the client’s needs and its larger focus on meeting the requirements of the client. In addition,
the agile method is more advantageous with the time constraint imposed on our team, the constraints already
given in our requirements and the large amounts of UML modelling produced.

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 16 of 21

7.3 Programming Languages

We decided on using Java as our main programing language for the development of the game. One of the main
reasons was that we have all had experience with it in our first year in university. It is also one of the most
popular programming language with lots of open source libraries and support available. Also Java makes
implementing cross platform applications really simple as it can virtually run on any type of machine and this
may help us overcome some limitations of the university lab computers on which we are supposed to run the
game. Other languages considered were Python and C#, however we decided that Python isn’t suitable for
large scale projects and the lack of experience in C# would require too much time.

7.4 Collaboration and Other Software Tools

In this section we will discuss the collaboration tools, software and programing languages we decided to use in
our game:

e Git - Git will allow us to easily keep track of changes in the source code, UML diagrams and code
documentation through time stamps and commented notes. We will be using the GitHub service, as it
provides many web tools to navigate and edit code without the need to enter Git commands yourself. It
will also be useful in helping developers work on different aspects of the game simultaneously,
automatically resolving most of the conflicts. It has been taught in lectures, widely used in open source
projects and has an easy to read and understand documentation. Git is more complicated than its
counterpart SVN and might require more time to get used to, however, it is more reliable as the
repository is distributed and in the unlikely event of GitHub failing we won’t lose any files. There are
some team members who are experienced in using GitHub who can teach the other team members in
how to use it, so we would spend less time as a group learning GitHub.

e Facebook - It is accessible at any time with an Internet connection, making it a great way to
communicate with the group at all times if there are any problems or anything needs to be discussed.
Currently, all team members use Facebook as an everyday communication method to friends therefore
it would be straightforward to integrate it.

e Eclipse - Eclipse is one of the most popular IDE’s for development in Java. All of our team members
have experience in it as we all worked with it in our first year programing module and is available on the
university’s system should we need to use them.

e Papyrus - It is integrated with Eclipse. It provides functionality for saving the diagrams and exporting
them into an image format. It is also provides OCL validation functionalities during the implementation
of the game to allow us to update our UML diagrams at the same time.

e Google Docs / Drive - It is a good collaboration tool for documenting work and creating charts. It
allows everyone in the team to work simultaneously on a single document without the need to distribute
the document locally as it uses Google’s Cloud system, Google Drive. It allows us to suggest edits to
each person’s work.

e Excel - We use Microsoft Excel for the Gantt chart as it provides much more functionality,
customization options and ready templates we can use. This would allow us to spend less time
planning and distribute the time between the other tasks.

7.5 Gantt Chart

For the task scheduling and task allocation of each assessment, we have constructed a Gantt chart in a
Microsoft Excel format. Assessment 1’s Gantt chart is contained within this section, while the other three are in
the Appendix [Appendix C]. An Excel template was used as a starting point, and was later modified to suit our
team’s needs. The Gantt chart is a way of helping to organise our team, in order to save time on building a
complex project plan from scratch. The whole assessment was split into different categories and each category
was split into several tasks. Tasks are then assigned a starting and an end date. In the chart each task is
represented by a bar in the corresponding row. The part of the task where time has already passed is coloured
orange and the part yet to be completed is represented by a striped line. There is also a column showing the
percentage of the time allocated for a specific task that has passed. Dependencies between different tasks are
represented by black arrows where the arrow points towards the dependent task. Tasks are allocated using a
column in which team members responsible for it are assigned. There will be a different Gantt chart for each
assessment for simplicity. Gantt charts are updated regularly in team meetings and they reflect our whole
development process. Gantt charts are subject to change during the whole project.

Software Engineering Project (SEPR) | Assessment 1 Report | Team “EEP” | Page 17 of 21

Assessment 1 Current Date: 38 - High Priority - Medium Priority Low Priority % Complete - No Priority
Autumn 2 Autumn 3 Autumn 4 Autumn 5 Autumn 6 Autumn 7
ACTIVITY START END DURATION PERCENT PRIORITY TEAM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
COMPLETE MEMBER Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun
3 38 36 100% 1

REQUIREMENTS

Requirements elicitation 3 5 3 100% 1 AG/RC

Constraint requirements 6 8 3 100% 2 AG/RC

User requirements 9 12 4 100% 1 AG/RC

Functional requirements 13 16 4 100% 1 AG/RC

Non-functional requirements 17 23 7 100% 2 AG/RC

Use cases 24 26 3 100% 3 ALL

Formalizing regirements document 27 34 8 100% 1 RC

Review 35 38 4 100% 2 ALL
ARCHITECTURE

Learning UML 3 15 13 100% 3 ALL

Identifying high level architecture 13 20 8 100% 1 AF

Building architecture models 21 27 7 100% 1 AF

Justification 28 31 4 100% 2 AF/SK

Formalizing architecture document 32 34 3 100% 1 AF

Review 35 38 4 100% 2 ALL _—
PLANNING

Gantt chart, time scheduling for assessment 1 6 16 11 100% 1 SK

Gantt chart, time scheduling for assessment z 10 14 5 100% 1 SK

Gantt chart, time scheduling for assessment & 15 18 4 100% 3 SK

Gantt chart, time scheduling for assessment ¢ 15 18 4 100% 3 SK

Software engineering approach research 12 18 7 100% 2 PL

Software engineering approach justification 19 26 8 100% 2 PL

Collaboration tools research 6 20 15 100% 1 SK

Collaboration tools justification 21 30 10 100% 2 SK

Formalising planning document 31 34 4 100% 1 AG/SK

Planning review 35 38 4 100% 2 ALL __
RISK ASSESSMENT

Risk analysis based on user requirements 14 30 17 100% 2 PL/YD

Risk analysis based on functional requiremen 19 30 12 100% 2 PL/YD

Identifying project risks 5 30 26 100% 2 PL/YD

Business risks 5 30 26 100% 2 PL/IYD

Formailising risk assessment document 31 34 4 100% 1 PL/YD

Review 35 38 4 100% 2 ALL
ASSESSMENTL

Assessment 1 - There are two paths with the longest path, but the critical path is the one specified here due to the dependencies:

Requirements elicitation (3 days) > Constraint Requirements (3 days) > User Requirements (4 days) > Functional Requirements (4 days) > Non-Functional Requirements (7 days) > Use Cases (3 days) > Formalising Requirements Document (8 days) >

Review (4 days) = Assessment 1 Deadline reached and completed (36 days)

Create team decision making process to make decisions
run smoothly. Any time the design needs to be altered we
must have a team meeting to discuss and collect

Have a team meeting to discuss ideas and try to reach a

: Team has a disagreement which everyone's ideas. If there are differing opinions, members i i . 4
1 Project halts progress. need to be vocal about them so that they can be gﬁ)crl]salon. If a decision still cannot be made, contact Tim and Andy
discussed to ensure we get the best result possible. This :
will help avoid further disagreements later in
development.
Hold a team meeting and try to find a simpler solution to the
2 Proiect & Product Network solution is found to be too Try to keep the network design as simplistic as possible problem. If none can be found, the product will need to be Alfio
) complicated to implement. throughout development. changed to allow local play instead (This would be a severe set
back).
Leave extra time in the team's timetable so that, if parts of
: g the project do take longer than expected, there is time for If this occurs and we do not have enough time to complete the
3 Project 2 Eggﬁ:}’:%e"pﬂmﬁ&ind weare sto complete the project by the deadline. The most project, we must consider removing unnecessary features from Andy and Stefan
P up . important features of the project should be implemented our design.
first.

The team has been split into pairs. If one of
the pair is ill, the other person in the pair
will manage their work, as in the action

Change the plan and the Gantt chart as soon as possible.
Reallocate the tasks they have failed to do due to illness
amongst the rest of the group. Plan the rest of the work that the

All source code and work must be shared. At least two
A team member is ill and so cannot people at a time should be able to work on a single part of

4 Project 2 2 work for a short period of time (i.e. a the project. We always need at least one person (e.g. the section. If both people in the pair are ill,
week) leader) to be familiar with the work each team member is ill member must da when they come back. Other members or Andy will manage their work. The pairs are:
doin the leader must manage the work clearly so that an ill member Andv and Richard: Alfio and Stefan: Peter
g- can continue the work more easily and quickly. andx(indi ’ !
f . Team member's should back up their work whenever Try to find the backup from them or someone else. Otherwise, !
5 Project 2 2 Team member loses their work possible. do the work again as quickly as possible. The team member that lost their work
Part of the game (e.g. animation) Take into account the limitations of the department's
6 Product 2 2 does not work on the given computers when making the game. Test the product on Edit game to make it compatible. Alfio and Peter
equipment the given hardware before submitting the project.
7 Project & Product 2 2 Team changes mind on how to do Be cautious when making big decisions. Consider the Team meeting to discuss the implications of the change, and And
) something alternatives in detail before making a decision. work out what needs to be edited to accommodate the change. Y
Be careful when writing code that you do not stray too far
from the plan. Check the class diagrams regularly and . . ;
8 Proiect 2 2 Person's code is not compatible with make sure you have the correct variable, method and %Zemps%rhs/gg tc(? 210;;2?3 C%f:](:uladtiglrgt gi,htgr\?/(i’sltaﬂ}ﬁg C(s)ﬁgul d seek Stefan
d another person's code class names. The code should be tested for compatibility helo from the confi urationpmana ‘er (Stefan)’ i
regularly so that the likelihood of a major problem is P 9 g :
reduced.

The team has been split into pairs. If one of
All source code and work must be shared. At least two the pair is ill, the other person in the pair
people at a time should be able to work on a single part of See if they can catch up with the work they have missed. If not, will manage their work, as in the action

A team member is ill and so cannot

9 Project the project. We always need at least one person (e.g. section. If both people in the pair are ill,
work for a day or two leader) to be familiar with the work each team member is another team member can help do some of the work. Andy will manage their work. The pairs are:
doing. Andy and Richard; Alfio and Stefan; Peter
and Yindi.
" The team has been split into pairs. If one of
. . Change plan and Gantt chart as soon as possible. Reallocate the pair is ill, the other person in the pair
A team member is ill and so cannot Always leave enough extra space in the planning the tasks they have failed to do due to illness amongst the rest will manage their work, as in the action
10 Proiect 1 work for an extended period of time timetable for any accidents. All source code and work of the group. Plan the rest of the work that the ill member must section Ifgboth eople in the pair are ill
d (i-e. a month) P must be shared. At least two people at a time should be do when they come back. Other members or the leader must Andy will manape tﬁeir work El'he airs are:
e able to work on a single part of the project. manage the work clearly so that an ill member can continue the Andy and Richagrd' Alfio andIStefag' Peter
work more easily and quickly. and%(indi ’ !
If team member is unhappy or struggling with the course
Team member drops out of course, they should seek help from administration/their Replan the rest of the work and reallocate tasks amongst the
11 Project 1 meaning fewer people to work on the supervisors. Throughout the project, the leader should remaining team members. Try to get more help from the Andy; Stefan if it is Andy that left
project appease everyone's emotions and encourage everyone administrator and supervisors.
to continue their efforts.
Client changes their mind on one of PN ot Have a meeting to discuss the new requirement and gather
H : Leave enough extra time in the team's timetable so that f
. the requirements, meaning the : f new ideas. Replan the work. Make necessary changes to both .
12 Project & Product [product no longer satisfies all the tr}glgﬁtcessary changes can be incorporated into the the program and documentation. Try to change the project in Andy and Richard
requirements project. the most efficient way possible.
B Buness | T s sncther aroup 1 8KIG 1 s rginaldeas incur desian B o Superisor 0 dcuss he SHonso gy
Ensure the project plan satisfies all the requirements and ; . " . .
We find out some of the ; Have a team meeting as quickly as possible to find a solution.
14 Project & Product 1 requirements have not been ensure team members follow the plan during Make sure that the team has enough time to implement the Andy and Richard

development. Monitor the work regularly to make sure it is

going according to the plan. solution.

achieved late in development

. Risk
i U e s

Be careful when using any online resources in the game

During development we infringe (eg. images). Make sure all the resources we take from

15 Business 1 2 copyright. (eg. we may use an image websites can be used for business. Prepare the
which is copyright protected) resources ourselves when possible (e.g. draw pictures
and illustrate icons).
. R Design the game based on the technology we are using
16 Project & Product 1 2 gg%%:élﬂ?{gofrrerg;me design is (i.e. the programming languages used), the time we have
prog available and the skill of the team members.
17 Proiect 2 1 Team member's computer stops Make sure antivirus software is installed and updated. Be
d working careful when carrying laptops.
Keep the idea of balance in mind during development. Be
18 Product 2 1 Find that the game is unbalanced or careful not to implement anything which would give a
unfair during development single player an unfair advantage or make it impossible
for a player to catch up to the leading player.
Collaboration system (GitHub) goes
19 Proiect 1 1 down, stopping us from both Prepare more than one way to gather the project
d accessing and uploading to the together.
project
20 Project 1 1 Communication system (Facebook) Prepare more than one method of communication
goes down :
Team member is unable to attend a . f : : ;
. : b " Avoid doing things that may negatively influence the
21 Project 1 1 - ?\?Vehtillr;g (e.g. they leave university for project planning where possible.
Always note down any ideas we have during meetings.
22 Project & Product 1 1 An idea is lost when implementing a Tick off the ideas that we have already implemented and
) change in design late in development check the rest every time we having a meeting about the
design.
A resource is lost (e.g. picture, icon, Check the game folders every time they are copied or
23 Product i i - background) moved.

Remove copyrighted materials from the program ASAP. Find or Yindi
make a new resource instead.

Have a team meeting to go through the design to find a
solution. First try to find out if there is an easier method we can
use to solve the problem. If not, consider removing the feature
(this may mean we have to find an alternative way to satisfy a
requirement).

Peter and Alfio

Use department's computers instead until a repair is made. The owner of the computer

Have a team meeting to decide on the best course of action to

take to make the game more balanced. Edit the code as Richard
necessary to ensure the game is balanced.

A team member will set up a GIT server while GitHub is offline. Alfio
Use an alternative communication system instead (e.g. email, Alfio
google drive).

If the meeting is very important then have the meeting online,

such as using Facebook or possibly Skype. If it is not essential And
that every single team member attends then have the meeting Yy
as normal and update the person whom could not attend.

Change the design and plan as quickly as possible. Try to add Stefan
the idea into the current plan or program.

Locate the original file and copy it. Yindi

(1]

= Player

+ store

Q Resource

[1] | +age

= Region

[1] | + train

Eg + name: String [1]

5 getRandomObstacle{ in Stage: Mumber)

F eI

[1] | region [1]

¥

+ obstacle

statroTTs

Q Vertex

[0.1]
+ randomObstafpldBuEhts

+vertices

Q Status

Ex + currentRoute: Mumber [1]
Ex +routeCompletion: Mumber [1]

' calculateEarningsSoFar()
%+ hasFinished()

+ status

Q Store

(1l

+ usab

+ store

(1."]

Q Usable

=+ costInMletal; Mumber [1]
= + costinGold: Mumber [1]
= +age: Age [1]

(1]

Q Route

+ randomObstapldBvEhts

% + shortestPathTo(in destination: Vertex, in routes: Route)

¥ ¥

Q RandomObstacleEwvent
+ description: String [1]
+ speedFactor Mumber [1]
+ turnPenaltyRemaining: Mumber [1]

L

A W

1 b

1
i
i

]
Q Station

&5 +applyTo(in aTrain: Train) =}

+ name: String [1]

(1."]

Q Junction

+ route

Ex + length: Mumber [1]

Q Game =+ nickname: String [1] + player] Eg + name: String [1]
B -+ id: String [1] =1+ score: Mumber [1] -
' EL - goalsCompleted: Mumber [1]) i
=+ turn: Mumber [1] [1] + resources
Eg + difficulty: Number [1]| * 99M¢ - !;“;-‘ll & + calculateScore() Player ! -
£+ endTurn() 1 laver @ getﬂ.g.et] S trai H Goal A ?‘:\
& + hasFinished([1] +player | &5 + buy(inwhat: Usable) [1f1] +goals [— et P K S,
%+ canBuy(in what: Usable) = .eJr:|.||::tmn. t||r.19[] y .
i+ checkGoalsCompletion() =l + reward: Number [1] i =
| =+ age: Age [1] !
Jll [E3 + startingPoint: Station [1] .
Ei + endingPoint: Station [1] Q Spendable
o g9 £
[1] |+ player
%+ calculateReward()
11 T hasBeenfccomplished() __7
% + canBefccomplished() -7 !'ITI"-
P -
+ train [*1 %+ estimateDuration() ’ff :
= Train - :
Q Age e [e - I
3 + name: String [1] * age 171 |)+ model Siing 1 o =T
. : eta
=l + minGoals: Mumber [1] - =+ speed: Number [1] g
[1] + trains
ﬁ% + calculateSpeed()
5 + moveForward()
+ train

A

= TrainSpeedModifier

+speedFactor Mumber [1]
+ usedOn: Train [1]

¢l [0

&

+ turnsRemaining: Mumber [1]

-

+ useln(intrain: Train)

Bibliography

Assessment 1

1.

9.

CIO Staff, “How to define the scope of a project”,
http://www.cio.com.au/article/401353/how_define_scope_project/, [Nov. 2nd 2014]

JKinfoLine, “Software Project Planning”, http://www.jkinfoline.com/software-project-planning.html
[Nov. 2nd 2014]

IEEE Computer society, (1998, June 25th), “IEEE Recommended Practice for Software
Requirements Specification” [PDF]. Available:
http://www.math.uaa.alaska.edu/~afkjm/cs401/IEEE830.pdf [Nov. 4th 2014]

Python Software Foundation, “The Python Language Reference” [PDF]. Available:
https://docs.python.org/2/reference/introduction.html [Nov. 10th 2014]

Oracle, (2013, March 3rd), “The Java Language Specification Java SE 7 Edition” [PDF]. Available:
https://docs.oracle.com/javase/specs/jls/se7/jls7.pdf [Nov. 10th 2014]

IBM, “Rational Unified Process” [PDF]. Available:
https://www.ibm.com/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices

TP026B.pdf [Nov. 11th 2014]

F. Polack. Class Lecture, Topic “Software Engineering Introduction”, University of York, York, Oct.
9th 2014.

OpenSeminar, “Team Management”, http://openseminar.org/se/modules/11/index/screen.do [Nov.
11th 2014].

G. Rauch, “Socket.lIO 1.0 IS HERE”, http://socket.io/ [Nov. 3rd 2014]

10. GitHub, “Automattic / socket.io”, https://github.com/Automattic/socket.io [Nov. 3rd 2014]
GitHub, “Gottox / socket.io-java-client”, https://github.com/Gottox/socket.io-java-client [Nov. 3rd 2014]

http://www.google.com/url?q=http%3A%2F%2Fwww.cio.com.au%2Farticle%2F401353%2Fhow_define_scope_project%2F&sa=D&sntz=1&usg=AFQjCNH2IS5YFDq5IEjEvf0r7w0z1vtIxg
http://www.google.com/url?q=http%3A%2F%2Fwww.cio.com.au%2Farticle%2F401353%2Fhow_define_scope_project%2F&sa=D&sntz=1&usg=AFQjCNH2IS5YFDq5IEjEvf0r7w0z1vtIxg
http://www.google.com/url?q=http%3A%2F%2Fwww.jkinfoline.com%2Fsoftware-project-planning.html&sa=D&sntz=1&usg=AFQjCNHsDOyaXjQb1_UmjrnO7QYOj_ZKbQ
http://www.google.com/url?q=http%3A%2F%2Fwww.jkinfoline.com%2Fsoftware-project-planning.html&sa=D&sntz=1&usg=AFQjCNHsDOyaXjQb1_UmjrnO7QYOj_ZKbQ
http://www.google.com/url?q=http%3A%2F%2Fwww.math.uaa.alaska.edu%2F~afkjm%2Fcs401%2FIEEE830.pdf&sa=D&sntz=1&usg=AFQjCNEGz3jMXGot7sW2d1S0SVQljS_C8Q
http://www.google.com/url?q=http%3A%2F%2Fwww.math.uaa.alaska.edu%2F~afkjm%2Fcs401%2FIEEE830.pdf&sa=D&sntz=1&usg=AFQjCNEGz3jMXGot7sW2d1S0SVQljS_C8Q
https://www.google.com/url?q=https%3A%2F%2Fdocs.python.org%2F2%2Freference%2Fintroduction.html&sa=D&sntz=1&usg=AFQjCNEDWzWdWVHsJTtL830pj7qy1lV7bQ
https://www.google.com/url?q=https%3A%2F%2Fdocs.python.org%2F2%2Freference%2Fintroduction.html&sa=D&sntz=1&usg=AFQjCNEDWzWdWVHsJTtL830pj7qy1lV7bQ
https://www.google.com/url?q=https%3A%2F%2Fdocs.oracle.com%2Fjavase%2Fspecs%2Fjls%2Fse7%2Fjls7.pdf&sa=D&sntz=1&usg=AFQjCNHHyY3An8epIFQ_aXGF63FLVDn5og
https://www.google.com/url?q=https%3A%2F%2Fdocs.oracle.com%2Fjavase%2Fspecs%2Fjls%2Fse7%2Fjls7.pdf&sa=D&sntz=1&usg=AFQjCNHHyY3An8epIFQ_aXGF63FLVDn5og
https://www.google.com/url?q=https%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Frational%2Flibrary%2Fcontent%2F03July%2F1000%2F1251%2F1251_bestpractices_TP026B.pdf&sa=D&sntz=1&usg=AFQjCNFfTLHBwb1bf2RnvnEEwLrhW_jCmA
https://www.google.com/url?q=https%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Frational%2Flibrary%2Fcontent%2F03July%2F1000%2F1251%2F1251_bestpractices_TP026B.pdf&sa=D&sntz=1&usg=AFQjCNFfTLHBwb1bf2RnvnEEwLrhW_jCmA
https://www.google.com/url?q=https%3A%2F%2Fwww.ibm.com%2Fdeveloperworks%2Frational%2Flibrary%2Fcontent%2F03July%2F1000%2F1251%2F1251_bestpractices_TP026B.pdf&sa=D&sntz=1&usg=AFQjCNFfTLHBwb1bf2RnvnEEwLrhW_jCmA
http://www.google.com/url?q=http%3A%2F%2Fopenseminar.org%2Fse%2Fmodules%2F11%2Findex%2Fscreen.do&sa=D&sntz=1&usg=AFQjCNGCQWksXZD3yAFjvWC0sNeyW5CWgQ
http://www.google.com/url?q=http%3A%2F%2Fopenseminar.org%2Fse%2Fmodules%2F11%2Findex%2Fscreen.do&sa=D&sntz=1&usg=AFQjCNGCQWksXZD3yAFjvWC0sNeyW5CWgQ
http://www.google.com/url?q=http%3A%2F%2Fsocket.io%2F&sa=D&sntz=1&usg=AFQjCNGWDC-AKotI9DJyh1qTAq4wF_lFRg
http://www.google.com/url?q=http%3A%2F%2Fsocket.io%2F&sa=D&sntz=1&usg=AFQjCNGWDC-AKotI9DJyh1qTAq4wF_lFRg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FAutomattic%2Fsocket.io&sa=D&sntz=1&usg=AFQjCNE-veI1r1F_Y6sc4d7N6kWJNcIHTg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FAutomattic%2Fsocket.io&sa=D&sntz=1&usg=AFQjCNE-veI1r1F_Y6sc4d7N6kWJNcIHTg
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FGottox%2Fsocket.io-java-client&sa=D&sntz=1&usg=AFQjCNFLwiW6uTjJprGiSZmkclkaI5JI8w
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FGottox%2Fsocket.io-java-client&sa=D&sntz=1&usg=AFQjCNFLwiW6uTjJprGiSZmkclkaI5JI8w

