
Testing Document
TEAM HEC

1. Introduction

1.1 Overview
1.2 People
1.3 Testing History of the Project
1.4 Testing Quality

2. Test Procedures
2.1 Test Bed Setup
2.2 Adding new tests
2.3 Mocking

3. Unit Testing
3.1 Introduction
3.2 Tests

3.2.1 CoreGameTest
3.2.2 ShopTest
3.2.3 Train Tests
3.2.3.1 TrainTest
3.2.3.2 RouteTest
3.2.4 Card Tests
3.2.4.1 CardTest
3.2.4.2 GoldCardTest
3.2.4.3 ResourceCardTest
3.2.4.4 TeleportTest
3.2.4.5 GoFasterStripesCardTest
3.2.4.6 CardFactoryTest
3.2.5 MapTest
3.2.5.1 StationTest
3.2.5.2 MapObjTest
3.2.5.3 ConnectionTest
3.2.6 Dijkstra
3.2.6.1 DijkstraTest
3.2.6.2 EdgeTest
3.2.6.3 NodeTest
3.2.7 Goal Tests
3.2.7.1 GoalTest
3.2.7.2 GoalFactoryTest
3.2.8 PlayerTest

4. Interface Testing

1

1. Introduction
1.1 Overview
This document outlines the testing strategy for the first stage of development of Locomotion Commotion. It
includes descriptions of all of the automated unit tests, our interface testing strategy and our requirements
verification testing. If you have taken on our code you should easily be able to replicate our results.

1.2 People
Unit Testing was predominantly done by Callum Hewitt, the project manager. However, for more specialised parts
of the code unit tests were created by their respective authors, including Matthew Taylor, Elliot Bray and Sam
Anderson.

Interface testing was generally informal with final checks devised towards the end of the project to ensure
continued quality. This document defines exactly how the interface should work and some tests that can be
performed for each aspect of to ensure it still works correctly. These inspection tests were performed by Elliot Bray
and Rob Precious.

Our verification tests were done via inspection and are used to ensure that our Game delivers on the user
requirements. Any requirements which haven’t been delivered in this iteration have been justified in the
architecture document.

1.3 Testing History of the Project
For about 4 weeks during the project we had a problem where we could not run any tests. This lead to some
unstable development, particularly on the backend whilst the error was being tracked down. The problem was
eventually solved by mocking OpenGL and other LibGDX features in a class “GdxTestRunner”. The solution was
found online. Read carefully the section about adding new tests to see how to avoid this problem for new tests.

1.4 Testing Quality
It is impossible to test every possible scenario and some parts of our code were impossible to test at all, mainly
due to continued problems with mocking graphics libraries. However, as a team we feel that our tests cover as
much code as is necessary to be confident that the software will perform as expected. Our inspection tests backup
our unit tests well and should cover most problems.

2. Test Procedures
2.1 Test Bed Setup
All tests for our code are declared in the same package as the code they test. However, the files are stored in the
testsrc folder, which can be seen in the package explorer under LocomotionCommotion-core.

To set up the test bed you will first need to make sure you have loaded the project correctly. Visit this wiki or read
the user manual to see how to get started with the Locomotion Commotion repository. After Eclipse has been set
up follow these steps:

1) Select Run -> Run Configurations…

2

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FCallumHewitt%2FLocomotionCommotion%2Fwiki%2FGetting-Started&sa=D&sntz=1&usg=AFQjCNH8jDLUZn9fKF3XUiz22dVGx9szLg

2) Select JUnit from the left hand list and then select the new launch configuration button at the top.

3) In the new launch configuration window. Select the Test Runner to be JUnit 4 and the click “Run all tests in
the selected project, package or source folder”. Press “Search…” and look for the testsrc source folder. You
can rename this configuration to FullTest at the top.

4) At the bottom you might see an error saying “Multiple launchers available”. Click “Select one...”, Eclipse
JUnit launcher and then OK.

3

5) Click Run to run the configuration. The configuration should now be saved in the quick run menu so you
can use it at any time.

6) Add more configurations for individual test packages by adding new run configurations in the same way

and change “testsrc” to one of the individual test packages in the testsrc folder.

2.2 Adding new tests
When writing new tests ensure that you create a package in testsrc of the same name as the package the class you
want to test is under.

1) Right click the package the testcase needs to be part of in Package Explorer. Select New -> JUnit Test Case

2) Name your test class using the convention: “ClassToTest” + “test”. Use the browse button next to “Class
under test:” to find the class you want to test. Then press next.

4

3) Select the methods you want to test and then click Finish. You shouldn’t need to test any getters or setters.

2.3 Mocking
To run new tests you will need to run them with the GdxTestRunner class. This initialises OpenGL and libGDX
features correctly as well as the file system. Tests will fail without this class!

To run with GdxTestRunner make sure that your test class has imported the following:

org.junit.runner.RunWith;
com.TeamHEC.LocomotionCommotion.Mocking.GdxTestRunner;

Then above the class declaration add: @RunWith(GdxTesrtRunner.class). This should fix most problems with
graphics during testing. However, some classes which instantiate more complex UI structures won’t be able to be
tested, even with this solution. These should be tested using Inspection.

3. Unit Testing

3.1 Introduction
Unit tests are the main testing method for the back end. We used JUnit to create dynamic tests which execute code
in a testing environment. We test that outputs are generated correctly for certain methods (Black Box) and that
certain methods change their objects in the right way (White Box) . These testing types are distinguished in the
table below. All of the assertions have an error message set to print if it a test fails. This helps us find testing
problems more quickly.

The unit tests are all functional tests and test actions of objects as opposed to non-functional tests which check
how something feels and are more closely aligned to user experience. All of these tests can be run very quickly and
are designed for regression testing. They should be run after significant changes are made to the codebase,
ensuring that the project is still stable. If they fail then you know that your recent changes have broken some
features.

The testing approach for unit tests has been to add tests to methods which could break easily. For tests with
inputs we have only tested valid inputs. Invalid cases have not been considered. This is due to time constraints on
tests. We felt that the methods we test should never be in a situation that they receive invalid values. So, at least
for now, it was better to direct our attention to increasing test coverage for a large proportion of the backend than
test more inputs for a smaller number of methods.

5

3.2 Tests

3.2.1 CoreGameTest
This section is responsible for testing CoreGame. This is a very key class that ties most of the back end together
and is referenced heavily by the front end game screen. For this reason we used reflection to access the private
fields so we could check that the getters were working correctly. This is the only test that does this.

These tests have helped catch some key bugs. Running these tests we have fixed the following problems:

1. Multiple problems with Player’s resources not being set correctly at the beginning of the game. Players
were either missing large amounts of fuel and gold or had much more than expected. This was solved when
we changed how the constructors of Player worked and when we changed which classes were liable for
which parts of the initialisation game process. (eg. CoreGame generates start resources, Player generates
starting station and train. However, all is controlled by CoreGame).

2. Problems with connections between the UI and CoreGame. We realised that the UI was doing a lot of work
the back end was supposed to handle when we discovered that the UI (through Interface testing) and
CoreGame start values were very different

3. Saving the game was a very difficult method to create due to the amount of classes and features that have
to be accessed and formatted correctly. Testing was the only way to ensure that the JSON was valid and
could be interpreted by the JSON-simple library. It also allowed us to check that the save game did
represent the object saved.

Due to the central nature of the class many of the bugs found had their roots in classes other than CoreGame.
These bugs are explained in the sections below.

ID Description Category Author Status

Core
.tCoreGame

Check’s that CoreGame initialises all
values correctly.

White Box Callum Hewitt Pass

Core
.tFlipCoin

Checks that FlipCoin only generates
values between 0 and 1.

Black Box Callum Hewitt Pass

Core
.tEndTurn

Checks EndTurn correctly transfers
control and increments turn count.

White Box Callum Hewitt Pass

Core
.tStartTurn

Checks that StartTurn correctly
increments player fuel based on
owned station

White Box Callum Hewitt Pass

Core
.tGetBaseResources

Tests that getBaseResources
generates the correct resources

Black Box Callum Hewitt Pass

Core
.tGetGameMap

Tests that CoreGame has access to the
WorldMap.

White Box Callum Hewitt Pass

Core
.tGetPlayer1

Tests that getPlayer1 returns the right
player

White Box Callum Hewitt Pass

Core
.tGetPlayer2

Tests that getPlayer2 returns the right
player

White Box Callum Hewitt Pass

Core
.tGetTurnCount

Tests that getTurnCount returns the
turn count

White Box Callum Hewitt Pass

Core
.getTurnLimit

Test that getTurnLimit returns the turn
limit

White Box Callum Hewitt Pass

6

Core
.tGetPlayerTurn

Tests that getPlayerTurn returns
correctly

White Box Callum Hewitt Pass

Core
.tSaveGameJSON

Tests that saveGameJSON generates a
valid JSON file that represents the
CoreGame object

Black Box Callum Hewitt Pass

3.2.2 ShopTest
This section is responsible for the Shop class. This is quite an important class as much of the resource
management parts of the game hinge on shop being correct. Errors found using these tests include:

1. Problems with selling Electric fuel. Rounding errors kept giving recurring decimals. This was fixed by using
a maths library.

2. Some fuels were selling for the wrong price. We discovered that they were working from Coal Price instead
of the correct one for their fuel. This was caused by a copy paste error and was quickly amended.

3. Customers could buy too many cards. We added a limit so that the UI wouldn’t crash when it had too many
cards in it’s card hand to display.

ID Description Category Author Status

Shop
.tShop

Tests that Shop initialises correctly White Box Callum Hewitt Pass

Shop
.tBuyFuel

Tests that the correct amount of fuel is
bought for the right price and can not be
bought when the customer has no
money.

White Box Callum Hewitt Pass

Shop
.tSellFuel

Tests that the correct amount of fuel is
sold for the right price and can not be
sold when the customer doesn’t have the
correct fuel

White Box Callum Hewitt Pass

Shop
.tBuyCard

Tests that a customer can buy up to 7
cards only when they have the right
amount of Gold.

White Box Callum Hewitt Pass

3.2.3 Train Tests

3.2.3.1 TrainTest
Trains are important structures in our game and interact heavily with the UI. They must be tested thoroughly.

1. We didn’t find many bugs using these tests. Most of the problems we had with trains were UI and were fixed
using the interface tests or were related to route and were fixed below. These are mainly here for
regression testing.

ID Description Category Author Status

Train
.tTrain

Tests that all the different types of trains
are initialised correctly

White Box Callum Hewitt Pass

Train
.tRemoveUpgrade

Tests that removal of SpeedUpgrade works
correctly

White Box Callum Hewitt Pass

Train
.tAddUpgrade

Tests that addition of SpeedUpgrade works
correctly

White Box Callum Hewitt Pass

7

3.2.3.2 RouteTest

This section is responsible for testing the routing of trains through the map. It is a key class for the backend of the
Trains position and Goal completion testing, but also at the front end for displaying valid routes in the GUI and
allowing valid connections to be added and removed from the path accordingly.

Bugs found include unknown properties of Vector2 vector implementation - a key feature for scaling and updating
the trains position, it was important that they were used correctly.

1. It was discovered on creating a new Vector2 instance from an existing connection vector that any changes
to made to the new vector, such as scaling or normalising a vector would also change the original copy of
the vector within the Connection class.

This meant that scaling a vector in the update method would permanently scale the original vector, losing
the original normalised vector used to calculate other important features such as the position of the train.

This was fixed using the .cpy() method when initialising a Vector2 which the values of another as such:

Vector2 vect = path.get(routeIndex).getVector().cpy();

2. If the route was empty when calling the inStation() and getStation(), there was no check to see if the
existing path was empty, so when a connection hadn’t been added to a route, the code attempt to access
an index of an ArrayList that was empty, throwing an exception.

This was fixed with adding a .isEmpty() if statement in inStation() which returned true if empty.

ID Description Author Status

Route
.tGetTrainPos

Tests that the coordinates of a train within a route
are correct after moving the train through a route.

Matthew Taylor Pass

Route.
tRouteReloadConstru
ctor

Tests the second Route Constructor used to
implement an existing route is correct

Matthew Taylor Pass

Route.
tGetTotalLength

Adds connections to a route and checks if the total
length of the path is correct

Matthew Taylor Pass

Route.
tGetLengthRemaining

Moves a train through it’s route, checking if the
length remaining is correct

Matthew Taylor Pass

Route.
tGetStation

Checks if a train is currently in a station within the
route

Matthew Taylor Pass

Route.
tUpdate

Update/moving the train through it’s route,
checking it’s position is correct

Matthew Taylor Pass

8

3.2.4 Card Tests

3.2.4.1 CardTest
Cards are one of the more interesting features of the game. It was important that they worked correctly. No bugs
were found using these tests but we implemented them for the purpose of regression testing.

ID Description Category Author Status

Card
.tCard

Tests that an instance of Card is initialised
correctly.
Uses coalCard.

White Box Callum Hewitt Pass

Card
.tSetOwner

Tests that a Card’s owner can be set
correctly.

White Box Callum Hewitt Pass

3.2.4.2 GoldCardTest
These tests check that the GoldCard does what it should do and the attributes match up to what the should be.

ID Description Category Author Status

Card
.tImplementCard

Tests that the player’s gold increases when
the card was implemented

White Box Callum Hewitt Pass

Card.
tGoldCard

Tests that a valid GoldCard has been created
including correct name, image and has an
owner.

White Box Callum Hewitt Pass

3.2.4.3 ResourceCardTest
The Resource cards are the more boring and simple cards that we reward but it is important that the correct
resource is given with the correct image and owner.

1. We found a bug during the implementation of these Cards where the wrong fuel type was increasing during
implementation of the card. This was again due to a copy/paste error where the variables had not been
changed properly

ID Description Category Author Status

Card
.tImplementResourc
eCard

Tests that the player’s coal increases when
the card was implemented and the other
resources were not affected.

White Box Callum Hewitt Pass

Card.
tResourceCard

Tests that a valid ResourceCard has been
created including correct name, image and
has an owner.

White Box Callum Hewitt Pass

3.2.4.4 TeleportTest

Used to test the idea behind the TeleportCard in which a train is teleported from one position to another. Only
partially implemented due to a lack of UI selecting support for choosing the Train and Station to use. The players
first train and the teleport location LONDON were chosen as default tests.
No errors were found but it was implemented for regression testing as when this Card starts to take parameters it
will become important to test it properly.

9

ID Description Category Author Status

TeleportCard.
tImplementCard

Checks the new position of
the train matches that of
London

White Box Callum Hewitt Pass

TeleportCard.
tTeleportCard

Checks the constructor
initialises correctly

White Box Callum Hewitt Pass

3.2.4.5 GoFasterStripesCardTest

Used to increase the players Train speedMod by 10, currently uses the players first train due to lack of UI
implementation.
Again this has mainly been implemented for regression testing for the same reasons as TeleportCard.

ID Description Category Author Status

GoFasterStripesCard
..
tImplementCard

Checks the trains
speedMod is increased by
10

White Box Callum Hewitt Pass

GoFasterStripesCard
.
tGoFasterStripesCar
d

Checks the constructor
initialises correctly

White Box Callum Hewitt Pass

3.2.4.6 CardFactoryTest

Used to create new Card Instances on demand:

1. We accidentally mixed up CreateMagicCard and CreateResourceCard so each would try and create the
other. We were getting IndexOutOfBounds errors however as CreateMagicCard would try to generate a card
from the MagicCardList in range 0 to ResourceCardList.size() which often returned out of bounds. This was
fixed by switching the methods

ID Description Category Author Status

CardFactory.
tCreateAnyCard

Creates 5000 random
cards and checks that
at least 1 instance of
each exists

White Box Callum Hewitt Pass

CardFactory.
tCreateMagicCard

Creates 500 magic card
and checks at least 1
instance of each type
exists, with no resource
cards present

White Box Callum Hewitt Pass

CardFactory.
tCreateResourceCard

Creates 5000 resource
cards and checks there
is at least one instance
of each and none of
them contain a
MagicCard

White Box Callum Hewitt Pass

10

3.2.5 MapTest

3.2.5.1 StationTest
The Station class in itself does not have much complexity but is used by a variety of other classes so it is important
that the values it receives it assigns correctly. No errors were found here except in relation to Player.

ID Description Category Author Status

Station.tStation Tests that the Station
initialises all values
correctly

White Box Callum Hewitt Pass

3.2.5.2 MapObjTest
The Map is built up of MapObj it is important that the MapObj’s are created correctly and can be found using there
correct names. A map object does not have to be a station. No errors were found here.

ID Description Category Author Status

Map.
tMapObj

Test that the name is
the assign one and test
that it does not have a
station

White Box Callum Hewitt Pass

3.2.5.3 ConnectionTest
Connections are the the routes between two map objects. They are very critical map objects. We found no errors
but kept the tests for regression testing.

ID Description Category Author Status

Map

.tConnection

Test that connection
between two map
object is valid

White Box Callum Hewitt Pass

Map.
tIsReverseof

Checks that the
connection recognises
its inverse and does
not recognise some
connection that is not
its inverse

White Box Callum Hewitt Pass

3.2.6 Dijkstra

3.2.6.1 DijkstraTest

Dijkstra is used to compute the minimum path length between two station objects.

1. The main bug we found with this was where Comparable hadn’t been implemented for Node and the
priority queue would fail to add Nodes as they could not be compared. This was ammended by
implementing the interface.

11

ID Description Category Author Status

Dijkstra.
tDijkstra

Tests constructor is
intiliased correctly by
comparing the

White Box Callum Hewitt Pass

Dijkstra.testComput
ePaths

Tests that the
calculated res a value
in between 0 and 2000.
Alo tests that reward is
a non negative
number

White Box Sam Anderson Pass

Dijkstra.testLookUp
Node

Ensures the returned
node is a Node in
nodeList. Ensures the
returned node is not
an empty node.

White Box Sam Anderson Pass

Dijkstra.testInitialise
Graph

Ensures that graph
initialisation is correct.
Asserts that every
node in staionList is in
node list.

White Box Sam Anderson Pass

3.2.6.2 EdgeTest
Edges are how Dijkstra represents Connections in a form easier to perform the algorithm. No errors were found
here.

ID Description Category Author Status

Map.
tEdge

Test the edge object is
not null and the
weight matches with
the assign one.

White Box Callum Hewitt Pass

3.2.6.3 NodeTest
Nodes are how Dijkstra represents MapObjs in a form easier to perform the algorithm. No errors were found here.

ID Description Category Author Status

Map.

tNode

Tests:
The mapobj equals the one assigned.
The edges.size() is correct.
The minDistance is correct.
The next node is not null.

White Box Callum Hewitt Pass

12

3.2.7 Goal Tests

3.2.7.1 GoalTest

Goals are very critical to the game. They represent how the player will score.

1. We found an error where Goals wouldn’t create properly. They would be half formed. We were missing
quite a lot of the important variables. We made sure they were instantiated correctly.

2. We had lots of problems converting the results from Dijkstra's algorithm into a form that could be given as
a reward. This took some fiddling but we got it working eventually.

ID Description Category Author Status

Goal.
tGoal

Tests that the goal has
a start and end station

White Box Callum Hewitt Pass

Goal.
tAssignTrain

Test that the goal has
a train assigned to it.

White Box Callum Hewitt Pass

Goal.
tIsSpecial

Test that the goal is
not special. (When it
shouldn’t be)

White Box Callum Hewitt Pass

Goal.
tgetReward

Test that the reward is
greater than zero.

White Box Callum Hewitt Pass

Goal.
tgetStartDate

Test that the start date
is not null.

White Box Callum Hewitt Pass

3.2.7.2 GoalFactoryTest

GoalFactory is the only place Goals are generated outside of tests. It is important that they are right.

1. We fixed a bug where StartStation and EndStation were the same.

ID Description Category Author Status

GoalFactory.
tCreateRandomGoal

Test that the goal
factory returns a fully
valid goal.

White Box Callum Hewitt Pass

3.2.8 PlayerTest
This section is responsible for testing the Player class it is an important class as it interacts with many other
classes to allow the players actions to be recorded.
SellStation is not currently implemented due to not being supported on the UI as a result the contents of
sellStation and its test have been commented out but were both fully functional.
Errors found using these tests include:

1. Route did not check if the route was empty, causing an error where trains were not considered to be
in the station preventing the player from buying stations on occasion.

ID Description Category Author Status

Player.tPlayer Tests that the Player
initialises all values
correctly

White Box Elliot Bray Pass

13

Player.tPurchaseSta
ton

Tests that stations
adds the station to the
players list of stations,
correctly adds the line
information and
reduces the players
gold correctly only
when it is a valid
purchase (station is
unowned, player has a
train in the station and
has enough gold)

White Box Elliot Bray Pass

Player.tSellStation Tests that the station
is removed from the
players list of stations
and the correct
amount of gold is
given to the player
only when it is a valid
sale (the player owns
the station)

White Box Elliot Bray Not
activated

Player.tLineBonuses Tests that line bonuses
for stations are
calculated and applied
correctly

White Box Elliot Bray Pass

4. Interface Testing

Interface testing was carried by inspecting the various UI elements in the game itself to confirm if they are
working/appearing as intended. This is static testing and generally covers what is not tested by Unit tests.

The Table below lists each interactive UI element, with a description of how the element can be recognised in the
game and what action it should perform (if it does not currently perform an action, the action has been listed as
“Nothing yet”). It also lists any errors discovered when testing the UI elements and if they were fixed, along with if
the feature is functional (alters the state of the game) or non-functional (alters purely the UI) (UI elements that do
not yet have their functionality listed are described as “Non-functional (currently)” as upon implementation they
should become functional but as they stand are non-functional).

Feature Description of

element
Description of
action

Errors
discovered

Fixed Functional or
Non-function
al

Start Menu

newGameButto
n

The new game
button on the
main menu

Move screen (up)
to the new game
menu

Doesn’t move to
correct position

Yes Non-functional

loadGameButto
n

The load game
button on the
main menu

Move screen
(right) to the
load game menu

Doesn’t move to
correct position

Yes Non-functional

14

preferencesButt
on

The preferences
button on the
main menu

Move screen
(down) to the
preferences
menu

Doesn’t move to
correct position

Yes Non-functional

howToPlayButto
n

The how to play
button on the
main menu

Move Screen
(left) to how to
play menu

Doesn’t move to
correct position

Yes Non-functional

exitButton The exit button on
the main menu

Exits the game Functional

newGameBackB
utton

Back button on
the new game
screen

Moves screen
(down) to the
main menu

Doesn’t move to
correct position

Yes Non-functional

turnTimeoutBut
ton

Turn timeout
button on the new
game screen

Toggles the
highlight of the
turn timeout
texture

 Non-functional
(currently)

stationDomButt
on

Station
domination
button on the new
game screen

Toggles the
highlight of the
station
domination
button

 Non-functional
(currently)

newGameGoBut
ton

Go button on the
new game screen

Starts core game
(changes screen
to game screen)

Doesn’t open
game correctly

Yes Functional

turn50Button 50 button on the
new game screen

Toggles the
highlight of the
turn 50 button

 Non-functional
(currently)

turn100Button 100 button on the
new game screen

Toggles the
highlight of the
turn 100 button

 Non-functional
(currently)

turn150Button 150 buton on the
new game screen

Toggles the
highlight of the
turn 150 button

 Non-functional
(currently)

loadGameBackB
utton

Back button on
the load game
screen

Moves screen
(left) to the main
menu

Doesn’t move to
correct position

Yes Non-functional

preferencesGam
eBackButton

Back button on
the preferences
screen

Moves screen
(up) to the main
menu

Doesn’t move to
correct position

Yes Non-functional

howToPlayGam
eBackButton

Back button on
the how to play
screen

Moves screen
(right) to the
main menu

Doesn’t move to
correct position

Yes Non-functional

settingsButton Game settings
button on the
preferences
screen

Nothing yet Non-functional

15

displayButton Display settings
button on the
preferences
screen

Nothing yet Non-functional

soundButton Sounds settings
button on the
preferences
screen

Nothing yet Non-functional

controlButton Control settings
button on the
preferences
screen

Nothing yet Non-functional

homeButton Button between
previous and next
on the how to play
screen

Nothing yet Non-functional

nextButton Next button on the
how to play screen

Nothing yet Non-functional

prevButton Previous button
on the how to play
screen

Nothing yet Non-functional

Card

card(1-7) Any of the possible
7 cards the player
has

Raises the card
up, shows the
new card button
and lowers any
other raised
cards

1. Doesn’t raise
2. Doesn’t lower

others
3. Doesn’t show

used card
button

1. Yes
2. Yes
3. Yes

 Non-functional

useCardButton The use card
button above a
card

Calls use card
method passing
the selected card

1. Wrong index
sent

2. Not clickable
due to bounds
issue

1. Yes
2. Yes

Functional

Goals

goalActor (actor
for player goals
and goal menu
goals)

The tickets goals
are displayed on

If its a player
goal hover will
show the plan
route button, if
its a menu goal it
will show add
goal button.

Plan route didn’t
hide when leaving
goal bounds

Yes Non-functional

RemoveButton(
1-3)

Up and right of a
goal in the goal
window if you
have selected it in
the goal screen

If goal has just
been chosen
from goal menu
remove button
will undo that
choice otherwise
it will remove

Wrong texture
showing

Yes Functional

16

the goal entirely.

planRouteButto
n

The button on the
goal ticket in the
players goal
window

Open routing
mode

Plan route didn’t
hide when leaving
bounds

Yes Non-functional

addGoalButton The button on the
goal ticket in the
goals window

Adds selected
goal to player
goals

Not passing the
right index

Yes Functional

backButton The back button
on the goal screen

closes goal
menu

 Non-functional

refreshGoalButt
on

Not implemented
on the UI

Nothing yet Non-functional

Map

station The station blips
on the map

Opens the
station info
window

 Non-functional

stationSelect The select button
on the station info
window

If in starting
sequence it
selects player 1
and 2 stations
otherwise it
purchases
stations

Not recognising
trains being in the
station

Yes Functional

confirmRouteBu
tton

Confirm button in
routing mode

Closes the
routing mode

 Functional

undoLastRouteB
utton

Undo button in
routing mode

Undoes the last
connection

 Functional

abortRouteButt
on

Abort button in
routing mode

Undoes all
connections
made

 Functional

cancelRouteButt
on

Cancel button in
routing mode

Cancels the
route

 Functional

trainActor The train blips
that moves
around the map

Moves around
the map, if you
click on it, it
opens relevant
information for
that train
depending on
current state

Covers up
stations,
preventing them
from being
clicked/selected
for purchasing

Yes Non-functional

planRoute Plan route button
on the train info
window

Enters routing
mode

 Non-functional

Pause menu

17

game_pause_res
ume

Resume button on
the pause screen

Closes the pause
menu

 Non-functional

game_pause_sa
ve

Save button on
the pause screen

Nothing yet Non-functional

game_pause_set
tings

Settings button on
the pause screen

Nothing yet Non-functional

game_pause_m
ainmenu

Main menu button
on the pause
screen

Changes the
screen to start
menu

 Non-functional

Shop

game_shop_bac
kbtn

The back button
on the main shop
window

Closes the shop Non-functional

back Back button on
the buy and sell
windows

Goes to shop
start screen

 Non-functional

shopBuyButton Buy button on the
main shop
window

Changes the
shop screen to
buy

Does not update
prices label

Yes Non-functional

shopSellButton Sell button on the
main shop
window

Changes shop
screen to sell

 Non-functional

train Train screen (not
implemented yet)

Nothing Yet Non-functional

buyButton(coal,
oil, electric,
nuclear and
card)

The buy button for
coal, oil, electric,
nuclear and card
to purchase the
chosen item

Buys the
corresponding
item * quantity
(if valid) (card
does not have
quantity)

 Functional

addButton(coal,
oil, electric and
nuclear)

The plus button
for increasing
quantity for coal,
oil, electric and
nuclear

Increases
quantity

Does not update
label correctly

Yes Functional

minusButton(co
al, oil, electric
and nuclear)

The minus button
for decreasing
quantity for coal,
oil, electric and
nuclear

Decreases
quantity

Does not update
label correctly

Yes Functional

UI_Elements

getStartedWind
ow

The window that
appears when a
game starts

The notification
window for the
starting
sequence

 Non-functional

18

game_menuobje
ct_tickettoggle

Ticket symbol in
the top left

Toggles side
menu that shows
the players goals

 Non-functional

game_menuobje
ct_goalscreenbt
n

Goal screen
button in the top
left

Toggles goal
screen

 Non-functional

game_menuobje
ct_menubtn

The pause button
(three horizontal
bars) in the top
right

Toggles pause
menu

 Non-functional

game_menuobje
ct_infobutton

The i button in the
bottom right

Toggles map info
image

 Non-functional

game_menuobje
ct_shopbtn

The dollar symbol
button in the
bottom right

Opens shop Non-functional

game_menuobje
ct_traindepotbt
n

The train symbol
button in the
bottom right

Opens train
depot

 Non-functional

game_menuobje
ct_endturnbutto
n

The end turn
button

Ends turn and
calls associated
methods

 Functional

game_card_togg
lebutton

The show cards
button at the
bottom

Toggles the
visibility of cards

 Non-functional

game_resources
_togglebutton

Three horizontal
bars button in the
bottom left

Toggles the
expansion of the
resources bar

 Non-functional

window The window used
for all the warning
messages

The window
used in all
warning
messages

 Non-functional

5. Requirements Validation
We wanted to ensure that we were meeting the requirements we had set ourselves so for validation we inspected
our game to ensure that we have features implemented to satisfy our used requirements. User requirements are all
backed by system requirements so we felt like we didn’t need to test validation for those. Any requirements which
haven’t been satisfied are featured at the end of our Architecture Document where we explain why that
requirement is not satisfied.

This is testing by inspection. The ‘Evidence for Satisfaction’ column describes what feature can be inspected in
game, and how to inspect it to ensure that the requirement has been met.

Req ID Description Evidence for Satisfaction

User.GP.1 Game MUST be turn based.

We have an End Turn button which when pressed
switches control between two separate Player

19

entities. Can be checked by playing a game and
checking that before pressing End Turn you can
control one set of Trains and Stations and have
access to one list of goals and after you cannot
access that set but you have access to a different
set. Pressing End Turn again restores access to the
previous set of controls.

User.GP.2.1 Players MUST be provided with goals.

Goal Menu. Mousing over a ticket icon in the
GoalMenu and pressing add to Goals will assign a
goal to a player.

User.GP.2.2
Goals MUST be based around sending trains from
city to city.

Goals specify a start station and end station and
will complete and reward players after they route a
train through the start station and then the end
station after having assigned a goal to a train.

User.GP.2.3 Game MUST support at least 10 different goals.

Game randomly generates goals. We have 20
stations so we have 190 different combinations of
Start and End stations. (20 choose 2).This isn’t
even accounting for cargo being one of two
options either, which varies across Goals.

User.GP.2.4
Each goal MUST have an associated number of
points a player can score for completing it.

NOT IMPLEMENTED. SEE ARCHITECTURE DOC.

User.GP.2.5 Goals MUST be completable.

If you assign a goal to a train and route it through
the Goal’s start station and end station (start
before end) the Goal will complete and reward the
player when the train arrives at the end station.

User.GP.2.6 Users MUST be able to accept or reject goals.

The user has a choice of 9 goals in goal menu. They
can choose to accept three goals and refuse to
take any they do not wish to complete.

User.GP.3.1 Players MUST be able to obtain resources.

Stations will generate resources for the player.
Upon pressing End Turn a Player’s resources will
increase based on their owned stations’ resource
type and resource output parameters. Players can
also obtain resources by purchasing them in the
shop. Players can gain gold by selling fuel in the
shop.

User.GP.3.2 Players MUST be able to deploy resources.

Players ‘deploy resources’ by routing trains. This
takes some of the player’s resources as fuel for the
train. They can also use resources in a shop either
by selling fuel or buying fuel with gold. Player’s can
also use Cards from the card dock at the bottom of
the screen by clicking “SHOW CARDS” and clicking
one of the card icons that appear, then pressing
“Use Card”.

User.GP.3.3
Game MUST have only 7 different types of
deployable resource.

The game’s 7 resources are:
1. Gold
2. Coal
3. Oil
4. Electric
5. Nuclear
6. Cards

20

7. Trains

All are deployable albeit in different ways. Cards
get used up for special bonuses, fuel is used by
trains, gold is used to buy items in the shop and
trains are deployed to the map and used to gain
more resources. How these are each deployed has
been explained in other rows of this table.

User.GP.3.4
Game SHOULD have a series of wild cards which
cause random effects.

We generated a couple of ‘magic’ wild cards which
teleport a train (currently only to London) when
used and another which increases the base speed
of a train. We also have resource cards which give
the player free resources when used. These cards
are generated randomly so you never know what
you’re going to get. You can see this when you
purchase cards from the shop. You cannot specify
what card type you receive.

User.GP.4
Game MUST have random events which affect
certain routes, cities or other gameplay features.

NOT IMPLEMENTED. SEE ARCHITECTURE DOC.

User.GP.5.1
Players MUST be able to send trains between
different European cities (fictional or nonfictional).

Player’s can route trains between cities by
selecting them and pressing PLAN ROUTE. They
can then select a Station (representing European
cities) adjacent to their location and, assuming
they have enough fuel, select confirm to send the
train to that city over the next few of the Player’s
turns.

User.GP.5.2
Players MUST be able to plan non­direct routes
via other cities.

Player can continue to plan the route after
selecting an adjacent city such that the route
extends from the adjacent city to another one.
They click and confirm in the same as in
User.GP.5.1.

User.GP.5.3
Players SHOULD be able to abort routes. There
SHOULD be a penalty for this action.

Player can abort a route at any time however they
will not recover the fuel it took to get them to the
next station. They click the abort button in route
panning mode.

User.GP.5.4
Players SHOULD be able to halt and restart trains
whilst on their routes.

NOT IMPLEMENTED. SEE ARCHITECTURE DOC.

User.GP.6.1 Game MUST include at least 5 different cities.
Game includes 20 different cities. As can be seen
when the game is launched.

User.GP.6.2
There SHOULD be at least two junctions (i.e., train
routes that intersect).

There are two junctions where lines cross located
between Warsaw and Moscow and between
Prague and Paris. These act like stations but do
not perform the same actions.

User.GP.6.3
There MUST be at least two obstacles in the
game.

NOT IMPLEMENTED. SEE ARCHITECTURE DOC.

User.GP.7.1
User MUST be able to score points, such that the
player with the most points will win the game.

NOT IMPLEMENTED. SEE ARCHITECTURE DOC.

User.GP.7.2
User’s score MUST be based on their
achievement of goals.

NOT IMPLEMENTED. SEE ARCHITECTURE DOC.

User.GP.8
The system MUST have a method in which the
game ends and a winner is declared (or a draw is

NOT IMPLEMENTED. SEE ARCHITECTURE DOC.

21

declared).

User.GP.9 The game COULD have multiple game modes. NOT IMPLEMENTED. SEE ARCHITECTURE DOC.

User.GP.10
Game MUST support exactly two players on one
computer.

There are two distinct Player entities upon starting
the game with distinct sets of Trains, Stations and
Goals. Players switch between them by pressing
End Turn on ONE computer.

User.GP.11.
1

Game COULD support the purchasing and
upgrading of stations to provide benefits to the
owner. These benefits could be more train slots,
charging a use fee when the other player passes
through etc.

Partially implemented. Players can purchase a
station at the beginning and during the game
which will generate resource for them based on it’s
type. Rent features are available on the back end
but are not fully implemented. See Architecture
Doc for more.

User.GP.11.
2

Stations COULD belong to a Line providing
benefits if a Player owns multiple stations on a
Line.

Partially implemented. Stations belong to lines
and line bonuses are generated on the back end
but are not fully implemented. See Architecture
Doc for more.

User.GP.12.
1

User COULD have the ability to upgrade trains to
make them go faster, more efficient or support
more carriages.

NOT IMPLEMENTED. SEE ARCHITECTURE DOC.

User.GP.12.
2

Game SHOULD support more than one kind of
train.

Game supports four different types of train:
- Coal
- Oil
- Electric
- Nuclear

These can all be obtained by the player by
selecting a station of the same type at the start.

User.GP.13 There MUST be an in game currency.

We use Gold in the Shop as a currency for
purchasing fuel and cards. You also recieve Gold
for selling your items.

User.GP.14 Users SHOULD be able to purchase resources.

Players have access to a shop which sells the four
fuel types and Cards in exchange for Gold.

User.UI.1 The user’s current goals MUST clearly be shown.

The user’s Goals are displayed by selecting the
ticket in the top left hand corner of the screen.

User.UI.2
The user MUST be able to track the progress of
their trains.

The Map represents the User’s trains as blue and
orange blips showing their locations in relation to
the stations.

User.UI.3 MUST clearly show both players’ scores.

Sort of implemented. The score display is available
but it is not linked to a Player object as Players
currently don’t have scores.

User.UI.4
MUST clearly differentiate between different
player’s trains.

Both Player trains have different textures.

User.UI.5 COULD display both players names.

Names are displayed as labels next to the Player’s
scores at the top of the game screen. The current
player’s turn is shown on top of the End Turn
button.

User.UI.6

Users MUST have access to a start menu system
to start games, load games and quit the program.
This should be the first screen the users see.

The interface is designed. You can currently start
games, and quit the program and load games

22

interface is set up but it doesn’t perform an action.
At launch this is the first screen the player’s see.

User.UI.7

Users MUST have access to an in game menu
system/ pause screen that allows user to save
games and exit to the start screen.

Pressing the button in the top right corner opens
the pause menu. It has the options to save the
game and exit to the start screen. Save game is not
linked to the button.

User.UI.8
The start and pause screens SHOULD also
feature controls for a preferences screen.

The buttons are ready for a preferences screen in
the pause menu and in start a preferences screen
is available. However, the pause screen button
does not lead to a preferences screen and at the
start menu the preferences screen currently does
nothing.

User.UI.9 MUST display trains on screen. We have textures representing the Player’s trains.

User.UI.10 MUST display hazards on screen. NOT IMPLEMENTED. SEE ARCHITECTURE DOC.

User.UI.11 MUST display stations on screen.

Stations have textures and are labelled with their
associated city.

User.UI.12 MUST display routes on screen.

Routes are represented with lines which are visible
on the map.

User.UI.13 MUST display player resources on screen.

Player fuels and gold are located at the bottom of
the screen on the left hand side. Selecting show
cards will reveal user cards and player trains are
displayed on the map.

23

