4.

Testing Document
TEAM HEC

Introduction
1.1 Overview

1.2 People
1.3 Testing History of the Project

1.4 Testing Quality

Test Procedures

2.1 Test Bed Setup
2.2 Adding new tests
2.3 Mocking

Unit Testing
3.1 Introduction

3.2 Tests

3.2.1 CoreGameTest
3.2.2 ShopTest

3.2.3 Train Tests

3.2.3.1 TrainTest
3.2.3.2 RouteTest

3.2.4 Card Tests

3.2.4.1 CardTest

3.2.4.2 GoldCardTest
3.2.4.3 ResourceCardTest
3.2.4.4 TeleportTest
3.2.4.5 GoFasterStripesCardTest
3.2.4.6 CardFactoryTest
3.2.5 MapTest

3.2.5.1 StationTest
3.2.5.2 MapObjTest
3.2.5.3 ConnectionTest
3.2.6 Dijkstra

3.2.6.1 DijkstraTest
3.2.6.2 EdgeTest

3.2.6.3 NodeTest

3.2.7 Goal Tests

3.2.7.1 GoalTest

3.2.7.2 GoalFactoryTest
3.2.8 PlayerTest

Interface Testing

1. Introduction

1.1 Overview

This document outlines the testing strategy for the first stage of development of Locomotion Commotion. It
includes descriptions of all of the automated unit tests, our interface testing strategy and our requirements
verification testing. If you have taken on our code you should easily be able to replicate our results.

1.2 People

Unit Testing was predominantly done by Callum Hewitt, the project manager. However, for more specialised parts
of the code unit tests were created by their respective authors, including Matthew Taylor, Elliot Bray and Sam
Anderson.

Interface testing was generally informal with final checks devised towards the end of the project to ensure
continued quality. This document defines exactly how the interface should work and some tests that can be
performed for each aspect of to ensure it still works correctly. These inspection tests were performed by Elliot Bray
and Rob Precious.

Our verification tests were done via inspection and are used to ensure that our Game delivers on the user
requirements. Any requirements which haven’t been delivered in this iteration have been justified in the
architecture document.

1.3 Testing History of the Project

For about 4 weeks during the project we had a problem where we could not run any tests. This lead to some
unstable development, particularly on the backend whilst the error was being tracked down. The problem was
eventually solved by mocking OpenGL and other LibGDX features in a class “GdxTestRunner”. The solution was
found online. Read carefully the section about adding new tests to see how to avoid this problem for new tests.

1.4 Testing Quality

It is impossible to test every possible scenario and some parts of our code were impossible to test at all, mainly
due to continued problems with mocking graphics libraries. However, as a team we feel that our tests cover as
much code as is necessary to be confident that the software will perform as expected. Our inspection tests backup
our unit tests well and should cover most problems.

2. Test Procedures
2.1 TestBed Setup

All tests for our code are declared in the same package as the code they test. However, the files are stored in the
testsrc folder, which can be seen in the package explorer under LocomotionCommotion-core.

To set up the test bed you will first need to make sure you have loaded the project correctly. Visit this wiki or read
the user manual to see how to get started with the Locomotion Commotion repository. After Eclipse has been set

up follow these steps:

1) Select Run->Run Configurations...

% Java - Lo-com0tionCommotion—cure_fsrcfccmeaamHECﬂDcomtl'uﬂCo_m_mnﬁnn{Tminwa e java - Eclips
File Edit Refactor Source Mavigate Search Project | Run | CZT Window Help

: |=<3 = : i ‘g : Set Mext Statement Ctrl+<+R Iv
k8 Package Explorer 52 | gfu JUnit — <3==~{> - = " =%, Coverage Last Launched Ctrl+5Shift+F11
]
. X8 LocomotionCommotion [LocomotionCommotion t"-f R L
i]
4 L‘E LocomotionCommotion-core [LocomotionCommot *} Debug F1
oL
4 5 erc .
fila Run Hist b N
» H} com.TeamHEC.LocomotionCemmotion Sk
s EH com. TeamHEC. LocomotionCommotion. Card Run As b
: H} com.TeamHEC.LocomotionCommotion.Game Run Configurations...
» i com.TeamHEC LocomotionCommotion.Goal)
. HR com.TeamHEC LocometionCommeotion.Goal. LEll Sl '

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FCallumHewitt%2FLocomotionCommotion%2Fwiki%2FGetting-Started&sa=D&sntz=1&usg=AFQjCNH8jDLUZn9fKF3XUiz22dVGx9szLg

2) Select JUnit from the left hand list and then select the new launch configuration button at the top.

3 Create, ge, and run configurati
| Create a configuration that will launch a JUnit test.
nl
| g|)v‘| B Configure launch settings from this dialog:
" [New launch configuration h | |} - Press the 'Mew' button to create a configuration of the selected type.
Lt
o Android Application =] - Press the 'Duplicate’ button to copy the selected configuration.
i Ji Android JUnit Test 3¢ - Press the ‘Delete’ button t the selected configurati
| (] C/Ca+ Application - Press the 'Delete’ button to remove the selected configuration.
a2 % Eclipse Application }:D - Press the 'Filter' button to configure filtering options.
ol @ ronPython Run T,
A éj IronPython unittest It Oor view an existing configuration by selecting It.
L 5] Java Applet
o a [T Java Application Configure launch perspective settings from the 'Perspectives’ preference page.
[3] Desktoplauncher
Bl | Ju JUnit|
ﬁ JUnit Plug-in Test
a7 Jython run

3) Inthe new launch configuration window. Select the Test Runner to be JUnit 4 and the click “Run all tests in
the selected project, package or source folder”. Press “Search...” and look for the testsrc source folder. You
can rename this configuration to FullTest at the top.

| = Run Configurations

Create, manage, and run configurations

€3 Multiple launchers available - select one to continue

@

== ==
CEX B Mame: FullTest

& TronPython unittest Testmethod: |

[type fiter text [B et o= A.gumentﬂ g mas;patﬂ =h JRE] 5 Snurce]] Enwmnmanq =] cUmmmﬂ
Android Application (@ Run a single test
3¢ Android JUnit Test
2] C/C+ Application Praject: | LocomotionCommotion-care J[Browse.. |
& Eclipse Application [|| search.. |
@ IronPython Run
J[Search.. |

] Java Applet
4 [7] Java Application

7] DesktopLauncher (@) Run all tests in the selected project, package or source folder:

4 Ju JUnit testsrc
Ju New_configuration

Search...

Ji JUnit Plug-in Test
&7 Jython run

Test runner: JUnit 4

5

& Jython unittest

B Launch Group

4 0SGi Framework

[pyDev Django

251 PyDev Google App Run
& Python Run

&' Python unittest

R Randoop Launcher

Keep JUnit running after a test run when debugging

3 Multiple launchers available - Select one..

Filker matched 21 of 21 items

Aprly

@

o)

4) Atthe bottom you might see an error saying “Multiple launchers available”. Click “Select one...”, Eclipse

JUnit launcher and then OK.

This dialog allows you to specify which launcher to use when multiple
launchers are available for a configuration and launch mode.
Use configuration specific settings Change Workspace Settings...

Launchers:

Android JUnit Test Launcher
|Eclipse JUnit Launcher |

Description
The Eclipse JUnit Launcher supports running and debugging JUnit tests

@ ok |[Ccancel

5) Click Run to run the configuration. The configuration should now be saved in the quick run menu so you
can use it at any time.

B O QU H OIS

2 Ju 1 FullTest
0] 2 Desktoplauncher
Creates an = P DU
= T s =tgr
.;;._,Ei A st Run As -
blic Route(M Run Configurations...
Organize Favorites...
currentMapd
ronteTndey = A

6) Add more configurations for individual test packages by adding new run configurations in the same way
and change “testsrc” to one of the individual test packages in the testsrc folder.

2.2 Adding new tests

When writing new tests ensure that you create a package in testsrc of the same name as the package the class you
want to test is under.

1) Right click the package the testcase needs to be part of in Package Explorer. Select New -> JUnit Test Case
> #} com.TeamHEC.LocomotionCommation.Map as * Used to reload
> H} com.TeamHEC.LocomotionCommation.MapActors 45 * ({@param path cur
> H} com.TeamHEC.LocomotionCommeotion.Player a7 * fparam routelnc
B (Dmieam:i New » | 2% Java Project i
’ % (Dm‘TeamHE Go Into &% Android Application Project y
4 com.Team

> DB CoalTrain,j Open in New Window T Project.. 3
+ [4] ElectricTrai Open Type Hierarchy F4 | f§ Package 4
+ |3} FuelUpgra) 4
. 3} NuclearTrs Show In Alt+Shift+ W » | & Class 3
» [33 OilTrain ja & Copy Ctrl+C (5 | it i
>) Routejova 5= Copy Qualified Name G/ |Enam
> Da RouteListe @ Annotation
aste trl+
2 P Ctrl+V
>[I} SpeedUpg
&% Source Folder
o [J) Trainjava | 3¢ Delete Delete
. Da TrainDepo 4% Java Working Set <
+ [} Trainlnfol Build Path Y9 Folder
y Da TrainUpgra Source Alt+Shift+5» | o File
E% 3} com.TeamHE Refactor Alt+Shift+T » ' Untitied Tedt File
> testsre o . .
» Bt JRE System Libran| £ Import... il N
. m Gradle Dependend i1 Export.. [Ef JUnit Test Case ‘
> L‘—U assets
Exi le..
= build References v [9 Fill r
5 build.gradie Declarations 3 =i Other.. Ctrl<N
EE, OGLdpf.log t><h Refrech Fs I v i
Lﬁ LocomotionCommoti 76 * Set to true whe
H H {3 ”» 113 ”» 43
2) Name your test class using the convention: “ClassToTest” + “test”. Use the browse button next to “Class

under test:” to find the class you want to test. Then press next.

,
2= New JUnit Test Case
- —— o — -

|| | JUnit Test Case

Select the name of the new JUnit test case. You have the options to specify =
the class under test and on the next page, to select methods to be tested.
) New JUnit 3 test @ New JUnit4 test
Sourcefolder: LocomotionCommotion-core/src
Package: com TeamHEC. LocomotionCommotion Train

|
Name: TrainerTest

|
Superclass: javaang.Object

Which method stubs would you like to create?
] setUpBeforeClass) [tearDownAfterClass()

[/] setUp)

constructor
Do you want to add comments? (Configure templates and default value here)

[] Generate comments

Class undertest: Train

[ESSFER==)

[#] tearDown()

Browse...

Finish

I

Cancel

3) Select the methods you want to test and then click Finish. You shouldn’t need to test any getters or setters.

£ New JUnit Test Case 8 E=SRCR X
- — -
Test Methods
Select methods for which test method stubs should be created. =
Available methods:
4 [@©" Train ~| [Selectall
7] ©°© Train(String, Fuel, int, int, int, boolean, Route, Player| | ——
o getActor] Deselect All
@ getName() =
@ getValue) !
® getOwner()
© getSpeed()
© getSpeedMod()
@ getFuelPerTum()
@ getFuelRouteCost()
@ getFuellengthCostifloat)
o getFuelType(
© getRoute()
® setSpeedMod(int)
& cetFuelPerTumfint) s
10]
& methods selected.
Create final method stubs
Creste tasks for generated test methods
@ pren = Conce

2.3 Mocking
To run new tests you will need to run them with the GdxTestRunner class. This initialises OpenGL and libGDX
features correctly as well as the file system. Tests will fail without this class!

To run with GdxTestRunner make sure that your test class has imported the following:
org.junit.runner.RunWith;
com.TeamHEC.LocomotionCommotion.Mocking.GdxTestRunner;

Then above the class declaration add: @RunWith(GdxTesrtRunner.class). This should fix most problems with
graphics during testing. However, some classes which instantiate more complex Ul structures won’t be able to be
tested, even with this solution. These should be tested using Inspection.

d ke

[@Runkith (GdxTestRunner.class)
public class CardFactoryTest {

[I I S N

n B

3. UnitTesting

3.1 Introduction

Unit tests are the main testing method for the back end. We used JUnit to create dynamic tests which execute code
in a testing environment. We test that outputs are generated correctly for certain methods (Black Box) and that
certain methods change their objects in the right way (White Box) . These testing types are distinguished in the
table below. All of the assertions have an error message set to print if it a test fails. This helps us find testing
problems more quickly.

The unit tests are all functional tests and test actions of objects as opposed to non-functional tests which check
how something feels and are more closely aligned to user experience. All of these tests can be run very quickly and
are designed for regression testing. They should be run after significant changes are made to the codebase,
ensuring that the project is still stable. If they fail then you know that your recent changes have broken some
features.

The testing approach for unit tests has been to add tests to methods which could break easily. For tests with
inputs we have only tested valid inputs. Invalid cases have not been considered. This is due to time constraints on
tests. We felt that the methods we test should never be in a situation that they receive invalid values. So, at least
for now, it was better to direct our attention to increasing test coverage for a large proportion of the backend than
test more inputs for a smaller number of methods.

3.2

Tests

3.2.1 CoreGameTest

This section is responsible for testing CoreGame. This is a very key class that ties most of the back end together
and is referenced heavily by the front end game screen. For this reason we used reflection to access the private
fields so we could check that the getters were working correctly. This is the only test that does this.

These tests have helped catch some key bugs. Running these tests we have fixed the following problems:

1.

Multiple problems with Player’s resources not being set correctly at the beginning of the game. Players
were either missing large amounts of fuel and gold or had much more than expected. This was solved when
we changed how the constructors of Player worked and when we changed which classes were liable for
which parts of the initialisation game process. (eg. CoreGame generates start resources, Player generates
starting station and train. However, all is controlled by CoreGame).

Problems with connections between the Ul and CoreGame. We realised that the Ul was doing a lot of work
the back end was supposed to handle when we discovered that the Ul (through Interface testing) and
CoreGame start values were very different

Saving the game was a very difficult method to create due to the amount of classes and features that have
to be accessed and formatted correctly. Testing was the only way to ensure that the JSON was valid and
could be interpreted by the JSON-simple library. It also allowed us to check that the save game did
represent the object saved.

Due to the central nature of the class many of the bugs found had their roots in classes other than CoreGame.
These bugs are explained in the sections below.

ID Description Category | Author Status
Core Check’s that CoreGame initialises all White Box | Callum Hewitt Pass
.tCoreGame values correctly.
Core Checks that FlipCoin only generates Black Box | Callum Hewitt Pass
tFlipCoin values between 0 and 1.
Core Checks EndTurn correctly transfers White Box | Callum Hewitt Pass
AEndTurn control and increments turn count.
Core Checks that StartTurn correctly White Box | Callum Hewitt Pass
AStartTurn increments player fuel based on

owned station
Core Tests that getBaseResources Black Box | Callum Hewitt Pass

.tGetBaseResources | generates the correct resources

Core Tests that CoreGame has access to the | White Box | Callum Hewitt Pass
tGetGameMap WorldMap.

Core Tests that getPlayerl returns the right | White Box | Callum Hewitt Pass
.tGetPlayerl player

Core Tests that getPlayer2 returns the right | White Box | Callum Hewitt Pass
.tGetPlayer2 player

Core Tests that getTurnCount returns the White Box | Callum Hewitt Pass
tGetTurnCount turn count

Core Test that getTurnLimit returns the turn | White Box | Callum Hewitt Pass
.getTurnLimit limit

Core Tests that getPlayerTurn returns White Box | Callum Hewitt Pass
.tGetPlayerTurn correctly

Core Tests that saveGameJSON generates a | Black Box | Callum Hewitt Pass
.tSaveGameJSON valid JSON file that represents the
CoreGame object

3.2.2 ShopTest
This section is responsible for the Shop class. This is quite an important class as much of the resource
management parts of the game hinge on shop being correct. Errors found using these tests include:
1. Problems with selling Electric fuel. Rounding errors kept giving recurring decimals. This was fixed by using
a maths library.
2. Some fuels were selling for the wrong price. We discovered that they were working from Coal Price instead
of the correct one for their fuel. This was caused by a copy paste error and was quickly amended.
3. Customers could buy too many cards. We added a limit so that the Ul wouldn’t crash when it had too many
cardsinit’s card hand to display.

ID Description Category Author Status
Shop Tests that Shop initialises correctly White Box Callum Hewitt Pass
.tShop
Shop Tests that the correct amount of fuel is White Box Callum Hewitt Pass
.tBuyFuel bought for the right price and can not be

bought when the customer has no

money.
Shop Tests that the correct amount of fuel is White Box Callum Hewitt Pass
.tSellFuel sold for the right price and can not be

sold when the customer doesn’t have the

correct fuel
Shop Tests that a customer can buyupto 7 White Box Callum Hewitt Pass
.tBuyCard cards only when they have the right

amount of Gold.

3.2.3 Train Tests

3.2.3.1 TrainTest
Trains are important structures in our game and interact heavily with the Ul. They must be tested thoroughly.
1. Wedidn’t find many bugs using these tests. Most of the problems we had with trains were Ul and were fixed
using the interface tests or were related to route and were fixed below. These are mainly here for
regression testing.

ID Description Category | Author Status
Train Tests that all the different types of trains White Box | Callum Hewitt | Pass
ATrain are initialised correctly

Train Tests that removal of SpeedUpgrade works | White Box | Callum Hewitt | Pass
.tRemoveUpgrade correctly

Train Tests that addition of SpeedUpgrade works | White Box | Callum Hewitt | Pass
.tAddUpgrade correctly

3.2.3.2 RouteTest
This section is responsible for testing the routing of trains through the map. It is a key class for the backend of the
Trains position and Goal completion testing, but also at the front end for displaying valid routes in the GUI and

allowing valid connections to be added and removed from the path accordingly.

Bugs found include unknown properties of Vector2 vector implementation - a key feature for scaling and updating
the trains position, it was important that they were used correctly.

1. Itwasdiscovered on creating a new Vector2 instance from an existing connection vector that any changes
to made to the new vector, such as scaling or normalising a vector would also change the original copy of

the vector within the Connection class.

This meant that scaling a vector in the update method would permanently scale the original vector, losing
the original normalised vector used to calculate other important features such as the position of the train.

This was fixed using the .cpy() method when initialising a Vector2 which the values of another as such:
Vector2 vect = path.get(routelndex).getVector().cpy();

2. If the route was empty when calling the inStation() and getStation(), there was no check to see if the
existing path was empty, so when a connection hadn’t been added to a route, the code attempt to access

an index of an ArrayList that was empty, throwing an exception.

This was fixed with adding a .isEmpty() if statement in inStation() which returned true if empty.

ID Description Author Status
Route Tests that the coordinates of a train within a route | Matthew Taylor Pass
.tGetTrainPos are correct after moving the train through a route.

Route. Tests the second Route Constructor used to Matthew Taylor Pass
tRouteReloadConstru | implement an existing route is correct

ctor

Route. Adds connections to a route and checks if the total | Matthew Taylor Pass
tGetTotalLength length of the path is correct

Route. Moves a train through it’s route, checking if the Matthew Taylor Pass
tGetLengthRemaining | length remaining is correct

Route. Checks if a train is currently in a station within the | Matthew Taylor Pass
tGetStation route

Route. Update/moving the train through it’s route, Matthew Taylor Pass
tUpdate checking it’s position is correct

3.2.4 Card Tests

3.2.4.1 CardTest
Cards are one of the more interesting features of the game. It was important that they worked correctly. No bugs
were found using these tests but we implemented them for the purpose of regression testing.

ID Description Category Author Status
Card Tests that an instance of Card is initialised | White Box Callum Hewitt Pass
.tCard correctly.

Uses coalCard.

Card Tests that a Card’s owner can be set White Box Callum Hewitt Pass
.tSetOwner correctly.
3.2.4.2 GoldCardTest

These tests check that the GoldCard does what it should do and the attributes match up to what the should be.

ID Description Category Author Status

Card Tests that the player’s gold increases when White Box Callum Hewitt Pass
tlmplementCard | the card was implemented

Card. Tests that a valid GoldCard has been created | White Box Callum Hewitt Pass
tGoldCard including correct name, image and has an
owner.

3.2.4.3 ResourceCardTest
The Resource cards are the more boring and simple cards that we reward but it is important that the correct
resource is given with the correct image and owner.
1. Wefound a bug during the implementation of these Cards where the wrong fuel type was increasing during
implementation of the card. This was again due to a copy/paste error where the variables had not been
changed properly

ID Description Category Author Status
Card Tests that the player’s coal increases when White Box Callum Hewitt Pass
tImplementResourc | the card was implemented and the other
eCard resources were not affected.
Card. Tests that a valid ResourceCard has been White Box Callum Hewitt Pass
tResourceCard created including correct name, image and

has an owner.

3.2.4.4 TeleportTest

Used to test the idea behind the TeleportCard in which a train is teleported from one position to another. Only
partially implemented due to a lack of Ul selecting support for choosing the Train and Station to use. The players
first train and the teleport location LONDON were chosen as default tests.

No errors were found but it was implemented for regression testing as when this Card starts to take parameters it
will become important to test it properly.

ID Description Category Author Status
TeleportCard. Checks the new position of | White Box Callum Hewitt | Pass
timplementCard the train matches that of

London
TeleportCard. Checks the constructor White Box Callum Hewitt | Pass
tTeleportCard initialises correctly

3.2.4.5 GoFasterStripesCardTest

Used to increase the players Train speedMod by 10, currently uses the players first train due to lack of Ul
implementation.
Again this has mainly been implemented for regression testing for the same reasons as TeleportCard.

ID Description Category Author Status
GoFasterStripesCard | Checks the trains White Box Callum Hewitt | Pass

. speedMod is increased by

timplementCard 10

GoFasterStripesCard | Checks the constructor White Box Callum Hewitt | Pass

. initialises correctly

tGoFasterStripesCar

d

3.2.4.6 CardFactoryTest

Used to create new Card Instances on demand:

1. We accidentally mixed up CreateMagicCard and CreateResourceCard so each would try and create the
other. We were getting IndexOutOfBounds errors however as CreateMagicCard would try to generate a card
from the MagicCardList in range 0 to ResourceCardList.size() which often returned out of bounds. This was
fixed by switching the methods

ID Description Category | Author Status
CardFactory. Creates 5000 random White Box | Callum Hewitt Pass
tCreateAnyCard cards and checks that

at least 1 instance of

each exists
CardFactory. Creates 500 magic card | White Box | Callum Hewitt Pass
tCreateMagicCard and checks at least 1

instance of each type
exists, with no resource
cards present

CardFactory. Creates 5000 resource White Box | Callum Hewitt Pass
tCreateResourceCard cards and checks there
is at least one instance
of each and none of
them contain a
MagicCard

10

3.2.5 MapTest
3.2.5.1 StationTest

The Station class in itself does not have much complexity but is used by a variety of other classes so it is important
that the values it receives it assigns correctly. No errors were found here except in relation to Player.

ID

Description

Category

Author

Status

Station.tStation

Tests that the Station
initialises all values
correctly

White Box

Callum Hewitt

Pass

3.2.5.2 MapObjTest

The Map is built up of MapObj it is important that the MapObj’s are created correctly and can be found using there

correct names. A map object does not have to be a station. No errors were found here.

that it does not have a
station

ID Description Category Author Status
Map. Test that the name is White Box Callum Hewitt Pass
tMapObj the assign one and test

3.2.5.3 ConnectionTest

Connections are the the routes between two map objects. They are very critical map objects. We found no errors

but kept the tests for regression testing.

tIsReverseof

connection recognises
its inverse and does
not recognise some
connection that is not
its inverse

ID Description Category Author Status
Map Test that connection White Box Callum Hewitt Pass
. between two map
.tConnection object is valid
Map. Checks that the White Box Callum Hewitt Pass

3.2.6 Dijkstra
3.2.6.1 DijkstraTest

Dijkstra is used to compute the minimum path length between two station objects.
1. The main bug we found with this was where Comparable hadn’t been implemented for Node and the
priority queue would fail to add Nodes as they could not be compared. This was ammended by

implementing the interface.

11

ID Description Category Author Status

Dijkstra. Tests constructor is White Box Callum Hewitt Pass
tDijkstra intiliased correctly by

comparing the
Dijkstra.testComput | Tests that the White Box Sam Anderson Pass
ePaths calculated res a value

in between 0 and 2000.
Alo tests that reward is
anon negative

number
Dijkstra.testLookUp | Ensures the returned White Box Sam Anderson | Pass
Node nodeisaNodein

nodelist. Ensures the
returned node is not
an empty node.

Dijkstra.testlnitialise | Ensures that graph White Box Sam Anderson | Pass
Graph initialisation is correct.

Asserts that every

node in staionListisin

node list.

3.2.6.2 EdgeTest
Edges are how Dijkstra represents Connections in a form easier to perform the algorithm. No errors were found
here.

ID Description Category Author Status
Map. Test the edge objectis | White Box Callum Hewitt Pass
tEdge not null and the

weight matches with
the assign one.

3.2.6.3 NodeTest
Nodes are how Dijkstra represents MapObjs in a form easier to perform the algorithm. No errors were found here.

ID Description Category | Author Status

Map. Tests: White Box | Callum Hewitt Pass
The mapobj equals the one assigned.
The edges.size() is correct.

The minDistance is correct.

The next node is not null.

tNode

12

3.2.7 Goal Tests
3.2.7.1 GoalTest

Goals are very critical to the game. They represent how the player will score.
1. Wefound an error where Goals wouldn’t create properly. They would be half formed. We were missing
quite a lot of the important variables. We made sure they were instantiated correctly.
2. We had lots of problems converting the results from Dijkstra's algorithm into a form that could be given as
a reward. This took some fiddling but we got it working eventually.

ID Description Category Author Status
Goal. Tests that the goal has | White Box Callum Hewitt Pass
tGoal a start and end station
Goal. Test that the goal has | White Box Callum Hewitt Pass
tAssignTrain a train assigned to it.
Goal. Test that the goal is White Box Callum Hewitt Pass
tisSpecial not special. (When it

shouldn’t be)
Goal. Test that the reward is | White Box Callum Hewitt Pass
tgetReward greater than zero.
Goal. Test that the start date | White Box Callum Hewitt Pass
tgetStartDate is not null.

3.2.7.2 GoalFactoryTest

GoalFactory is the only place Goals are generated outside of tests. It is important that they are right.
1. We fixed a bug where StartStation and EndStation were the same.

ID Description Category Author Status
GoalFactory. Test that the goal White Box Callum Hewitt Pass
tCreateRandomGoal | factory returns a fully

valid goal.

3.2.8 PlayerTest
This section is responsible for testing the Player class it is an important class as it interacts with many other
classes to allow the players actions to be recorded.
SellStation is not currently implemented due to not being supported on the Ul as a result the contents of
sellStation and its test have been commented out but were both fully functional.
Errors found using these tests include:

1. Route did not check if the route was empty, causing an error where trains were not considered to be

in the station preventing the player from buying stations on occasion.

ID Description Category Author Status
Player.tPlayer Tests that the Player White Box Elliot Bray Pass
initialises all values
correctly

13

Player.tPurchaseSta
ton

Tests that stations
adds the station to the
players list of stations,
correctly adds the line
information and
reduces the players
gold correctly only
when itis avalid
purchase (station is
unowned, player has a
train in the station and
has enough gold)

White Box

Elliot Bray

Pass

Player.tSellStation

Tests that the station
is removed from the
players list of stations
and the correct
amount of gold is
given to the player
only when it is a valid
sale (the player owns
the station)

White Box

Elliot Bray

Not
activated

Player.tLineBonuses

Tests that line bonuses
for stations are
calculated and applied
correctly

White Box

Elliot Bray

Pass

4, Interface Testing

Interface testing was carried by inspecting the various Ul elements in the game itself to confirm if they are
working/appearing as intended. This is static testing and generally covers what is not tested by Unit tests.

The Table below lists each interactive Ul element, with a description of how the element can be recognised in the
game and what action it should perform (if it does not currently perform an action, the action has been listed as

“Nothing yet”). It also lists any errors discovered when testing the Ul elements and if they were fixed, along with if
the feature is functional (alters the state of the game) or non-functional (alters purely the Ul) (Ul elements that do
not yet have their functionality listed are described as “Non-functional (currently)” as upon implementation they
should become functional but as they stand are non-functional).

Feature Description of Description of | Errors Fixed Functional or
element action discovered Non-function
al
Start Menu
newGameButto | The new game Move screen (up) | Doesn’t move to Yes Non-functional
n button on the to the new game | correct position
main menu menu
loadGameButto | Theload game Move screen Doesn’t move to Yes Non-functional
n button on the (right) to the correct position
main menu load game menu

14

preferencesButt | The preferences Move screen Doesn’t move to Yes Non-functional
on button on the (down) to the correct position
main menu preferences
menu
howToPlayButto | The how to play Move Screen Doesn’t move to Yes Non-functional
n button on the (left) to how to correct position
main menu play menu
exitButton The exit button on | Exits the game Functional
the main menu
newGameBackB | Back buttonon Moves screen Doesn’t move to Yes Non-functional
utton the new game (down) to the correct position
screen main menu
turnTimeoutBut | Turn timeout Toggles the Non-functional
ton button on the new | highlight of the (currently)
game screen turn timeout
texture
stationDomButt | Station Toggles the Non-functional
on domination highlight of the (currently)
button on the new | station
game screen domination
button
newGameGoBut | Go button on the Starts core game | Doesn’t open Yes Functional
ton new game screen | (changesscreen | game correctly
to game screen)
turn50Button 50 button on the Toggles the Non-functional
new game screen | highlight of the (currently)
turn 50 button
turn100Button 100 button onthe | Toggles the Non-functional
new game screen | highlight of the (currently)
turn 100 button
turn150Button 150 buton on the Toggles the Non-functional
new game screen | highlight of the (currently)
turn 150 button
loadGameBackB | Back button on Moves screen Doesn’t move to Yes Non-functional
utton the load game (left) to the main | correct position
screen menu
preferencesGam | Back button on Moves screen Doesn’t move to Yes Non-functional
eBackButton the preferences (up) to the main | correct position
screen menu
howToPlayGam | Back buttonon Moves screen Doesn’t move to Yes Non-functional
eBackButton the how to play (right) to the correct position
screen main menu
settingsButton Game settings Nothing yet Non-functional

button on the
preferences
screen

15

displayButton Display settings Nothing yet Non-functional
button on the
preferences
screen
soundButton Sounds settings Nothing yet Non-functional
button on the
preferences
screen
controlButton Control settings Nothing yet Non-functional
button on the
preferences
screen
homeButton Button between Nothing yet Non-functional
previous and next
on the how to play
screen
nextButton Next button on the | Nothing yet Non-functional
how to play screen
prevButton Previous button Nothing yet Non-functional
on the how to play
screen
Card
card(1-7) Any of the possible | Raisesthecard |1. Doesn’traise [l. Yes Non-functional
7 cards the player | up, shows the 2. Doesn’t lower 2. Yes
has new card button others 3. Yes
and lowersany [3. Doesn’t show
other raised used card
cards button
useCardButton | The use card Calls use card 1. Wrongindex 1. Yes | Functional
button above a method passing sent 2. Yes
card the selected card 2. Not clickable
due to bounds
issue
Goals
goalActor (actor | The tickets goals If its a player Plan route didn’t Yes Non-functional
for player goals | are displayed on goal hover will hide when leaving
and goal menu show the plan goal bounds
goals) route button, if
its a menu goal it
will show add
goal button.
RemoveButton(| Up andrightofa If goal has just Wrong texture Yes Functional
1-3) goal in the goal been chosen showing

window if you
have selected it in
the goal screen

from goal menu
remove button
will undo that
choice otherwise
it will remove

16

the goal entirely.

planRouteButto | The button onthe | Openrouting Plan route didn’t Yes Non-functional
n goal ticket in the mode hide when leaving
players goal bounds
window
addGoalButton | The buttononthe | Adds selected Not passing the Yes Functional
goal ticket in the goal to player right index
goals window goals
backButton The back button closes goal Non-functional
on the goal screen | menu
refreshGoalButt | Notimplemented | Nothingyet Non-functional
on on the Ul
Map
station The station blips Opens the Non-functional
on the map station info
window
stationSelect The select button If in starting Not recognising Yes Functional
on the stationinfo | sequence it trains beingin the
window selects player 1 station
and 2 stations
otherwise it
purchases
stations
confirmRouteBu | Confirm buttonin | Closes the Functional
tton routing mode routing mode
undoLastRouteB | Undo button in Undoes the last Functional
utton routing mode connection
abortRouteButt | Abort buttonin Undoes all Functional
on routing mode connections
made
cancelRouteButt | Cancel button in Cancels the Functional
on routing mode route
trainActor The train blips Moves around Coversup Yes Non-functional
that moves the map, if you stations,
around the map click onit, it preventing them
opens relevant from being
information for clicked/selected
that train for purchasing
depending on
current state
planRoute Plan route button | Enters routing Non-functional

on the train info
window

mode

Pause menu

17

game_pause_res
ume

Resume button on
the pause screen

Closes the pause
menu

Non-functional

game_pause_sa | Save button on Nothing yet Non-functional
ve the pause screen
game_pause_set | Settings button on | Nothing yet Non-functional
tings the pause screen
game_pause_m | Main menu button | Changes the Non-functional

ainmenu on the pause screen to start
screen menu
Shop
game_shop_bac | The back button Closes the shop Non-functional

kbtn

on the main shop
window

back Back button on Goes to shop Non-functional
the buy and sell start screen
windows
shopBuyButton | Buy button onthe | Changesthe Does not update Yes Non-functional
main shop shop screen to prices label
window buy
shopSellButton | Sell button onthe | Changesshop Non-functional
main shop screen to sell
window
train Train screen (not | Nothing Yet Non-functional
implemented yet)
buyButton(coal, | The buy button for | Buys the Functional
oil, electric, coal, oil, electric, corresponding
nuclear and nuclear and card item * quantity
card) to purchase the (if valid) (card
chosen item does not have
quantity)
addButton(coal, | The plus button Increases Does not update Yes Functional
oil, electricand | forincreasing quantity label correctly
nuclear) quantity for coal,
oil, electric and
nuclear
minusButton(co | The minus button | Decreases Does not update Yes Functional
al, oil, electric for decreasing quantity label correctly

and nuclear)

quantity for coal,
oil, electric and
nuclear

Ul_Elements

getStartedWind
ow

The window that
appears when a
game starts

The notification
window for the
starting
sequence

Non-functional

18

game_menuobje

Ticket symbolin

Toggles side

Non-functional

n

left

ct_tickettoggle [thetop left menu that shows

the players goals
game_menuobje | Goal screen Toggles goal Non-functional
ct_goalscreenbt | buttoninthetop | screen

game_menuobje
ct_menubtn

The pause button
(three horizontal
bars) in the top
right

Toggles pause
menu

Non-functional

game_menuobje
ct_infobutton

Theibuttonin the
bottom right

Toggles map info
image

Non-functional

bottom right

game_menuobje | The dollar symbol | Opens shop Non-functional
ct_shopbtn button in the

bottom right
game_menuobje | The train symbol Opens train Non-functional
ct_traindepotbt | buttoninthe depot

lebutton

button at the
bottom

game_menuobje | Theend turn Ends turn and Functional
ct_endturnbutto | button calls associated

n methods

game_card_togg | The show cards Toggles the Non-functional

visibility of cards

game_resources

Three horizontal

Toggles the

Non-functional

_togglebutton bars button in the | expansion of the
bottom left resources bar
window The window used | The window Non-functional
for all the warning | usedin all
messages warning
messages

5. Requirements Validation

We wanted to ensure that we were meeting the requirements we had set ourselves so for validation we inspected
our game to ensure that we have features implemented to satisfy our used requirements. User requirements are all
backed by system requirements so we felt like we didn’t need to test validation for those. Any requirements which
haven’t been satisfied are featured at the end of our Architecture Document where we explain why that
requirement is not satisfied.

This is testing by inspection. The ‘Evidence for Satisfaction’ column describes what feature can be inspected in
game, and how to inspect it to ensure that the requirement has been met.

Req ID Description Evidence for Satisfaction
We have an End Turn button which when pressed
User.GP.1 |Game MUST be tum based. switches control between two separate Player

19

entities. Can be checked by playing a game and
checking that before pressing End Turn you can
control one set of Trains and Stations and have
access to one list of goals and after you cannot
access that set but you have access to a different
set. Pressing End Turn again restores access to the
previous set of controls.

User.GP.2.1

Players MUST be provided with goals.

Goal Menu. Mousing over a ticket icon in the
GoalMenu and pressing add to Goals will assign a
goal to a player.

User.GP.2.2

Goals MUST be based around sending trains from
city to city.

Goals specify a start station and end station and
will complete and reward players after they route a
train through the start station and then the end
station after having assigned a goal to a train.

User.GP.2.3

Game MUST support at least 10 different goals.

Game randomly generates goals. We have 20
stations so we have 190 different combinations of
Start and End stations. (20 choose 2).This isn’t
even accounting for cargo being one of two
options either, which varies across Goals.

User.GP.2.4

Each goal MUST have an associated number of
points a player can score for completing it.

NOT IMPLEMENTED. SEE ARCHITECTURE DOC.

User.GP.2.5

Goals MUST be completable.

If you assign a goal to a train and route it through
the Goal’s start station and end station (start
before end) the Goal will complete and reward the
player when the train arrives at the end station.

User.GP.2.6

Users MUST be able to accept or reject goals.

The user has a choice of 9 goals in goal menu. They
can choose to accept three goals and refuse to
take any they do not wish to complete.

User.GP.3.1

Players MUST be able to obtain resources.

Stations will generate resources for the player.
Upon pressing End Turn a Player’s resources will
increase based on their owned stations’ resource
type and resource output parameters. Players can
also obtain resources by purchasing them in the
shop. Players can gain gold by selling fuel in the
shop.

User.GP.3.2

Players MUST be able to deploy resources.

Players ‘deploy resources’ by routing trains. This
takes some of the player’s resources as fuel for the
train. They can also use resources in a shop either
by selling fuel or buying fuel with gold. Player’s can
also use Cards from the card dock at the bottom of
the screen by clicking “SHOW CARDS” and clicking
one of the card icons that appear, then pressing
“Use Card”.

User.GP.3.3

Game MUST have only 7 different types of
deployable resource.

The game’s 7 resources are:
1. Gold

Coal

Oil

Electric

Nuclear

Cards

ok wn

20

7. Trains

All are deployable albeit in different ways. Cards
get used up for special bonuses, fuel is used by
trains, gold is used to buy items in the shop and
trains are deployed to the map and used to gain
more resources. How these are each deployed has
been explained in other rows of this table.

Game SHOULD have a series of wild cards which

We generated a couple of ‘magic’ wild cards which
teleport a train (currently only to London) when
used and another which increases the base speed
of a train. We also have resource cards which give
the player free resources when used. These cards
are generated randomly so you never know what
you’re going to get. You can see this when you
purchase cards from the shop. You cannot specify

User.GP.3.4 |cause random effects. what card type you receive.
Game MUST have random events which affect | NOT IMPLEMENTED. SEE ARCHITECTURE DOC.
User.GP.4 |certain routes, cities or other gameplay features.
Player’s can route trains between cities by
selecting them and pressing PLAN ROUTE. They
can then select a Station (representing European
cities) adjacent to their location and, assuming
they have enough fuel, select confirm to send the
Players MUST be able to send trains between train to that city over the next few of the Player’s
User.GP.5.1 | different European cities (fictional or nonfictional). turns.
Player can continue to plan the route after
selecting an adjacent city such that the route
extends from the adjacent city to another one.
Players MUST be able to plan non-direct routes They click and confirm in the same as in
User.GP.5.2 |via other cities. User.GP.5.1.
Player can abort a route at any time however they
will not recover the fuel it took to get them to the
Players SHOULD be able to abort routes. There next station. They click the abort button in route
User.GP.5.3 | SHOULD be a penalty for this action. panning mode.
Players SHOULD be able to halt and restart trains NOT IMPLEMENTED. SEE ARCHITECTURE DOC.
User.GP.5.4 |whilst on their routes.
Game includes 20 different cities. As can be seen
User.GP.6.1 |Game MUST include at least 5 different cities. when the game is launched.
There are two junctions where lines cross located
between Warsaw and Moscow and between
There SHOULD be at least two junctions (i.e., train Prague and Paris. These a.ct like stations but do
User.GP.6.2 |routes that intersect). not perform the same actions.
There MUST be at least two obstacles in the NOT IMPLEMENTED. SEE ARCHITECTURE DOC.
User.GP.6.3 |game.
User MUST be able to score points, such that the | NOT IMPLEMENTED. SEE ARCHITECTURE DOC.
User.GP.7.1 | player with the most points will win the game.
User's score MUST be based on their NOT IMPLEMENTED. SEE ARCHITECTURE DOC.
User.GP.7.2 |achievement of goals.
The system MUST have a method in which the | NOT IMPLEMENTED. SEE ARCHITECTURE DOC.
User.GP.8 |game ends and a winner is declared (or a draw is

21

declared).

User.GP.9 |The game COULD have multiple game modes. NOT IMPLEMENTED. SEE ARCHITECTURE DOC.
There are two distinct Player entities upon starting
the game with distinct sets of Trains, Stations and

Game MUST support exactly two players on one Goals. Players switch between them by pressing

User.GP.10 |computer. End Turn on ONE computer.

Partially implemented. Players can purchase a
. station at the beginning and during the game
Game COULD support the purchasing and which will generate resource for them based on it’s

User.GP.11. | charging a use fee when the other player passes but are not fully implemented. See Architecture

1 through etc. Doc for more.

Partially implemented. Stations belong to lines
Stations COULD belong to a Line providing and line bonuses are generated on the back end

User.GP.11. | penefits if a Player owns multiple stations on a but are not fully implemented. See Architecture

2 Line. Doc for more.

User COULD have the ability to upgrade trains to NOT IMPLEMENTED. SEE ARCHITECTURE DOC

User.GP.12. | make them go faster, more efficient or support ' '

1 more carriages.

Game supports four different types of train:
- Coal
- Oil
- Electric
- Nuclear

User.GP.12. | Game SHOULD support more than one kind of These can all be obtained by the player by

2 train. selecting a station of the same type at the start.
We use Gold in the Shop as a currency for
purchasing fuel and cards. You also recieve Gold

User.GP.13 | There MUST be an in game currency. for selling your items.

Players have access to a shop which sells the four

User.GP.14 |Users SHOULD be able to purchase resources. fuel types and Cards in exchange for Gold.

The user’s Goals are displayed by selecting the

User.UL1 |The user's current goals MUST clearly be shown. | ticketinthe top left hand corner of the screen.
The Map represents the User’s trains as blue and

The user MUST be able to track the progress of orange blips showing their locations in relation to

User.UL2 [their trains. the stations.

Sort of implemented. The score display is available
butitis not linked to a Player object as Players

User.UL3 |MUST clearly show both players’ scores. currently don’t have scores.

MUST clea.rly differentiate between different Both Player trains have different textures.

User.Ul.4 player’s trains.

Names are displayed as labels next to the Player’s
scores at the top of the game screen. The current
player’s turn is shown on top of the End Turn

User.UL5 [COULD display both players names. button.

:JsetrsrtMUST halve :ccess to adstar:c[:Ee”“ system | The interface is designed. You can currently start
o start games, load games and quit the program. .
User.UL.6 |This should be the first screen the users see. games, and quit the program and load games

22

interface is set up but it doesn’t perform an action.
At launch this is the first screen the player’s see.

Users MUST have access to an in game menu
system/ pause screen that allows user to save

Pressing the button in the top right corner opens
the pause menu. It has the options to save the
game and exit to the start screen. Save game is not
linked to the button.

User.UL.7 |games and exit to the start screen.
The buttons are ready for a preferences screen in
the pause menu and in start a preferences screen
is available. However, the pause screen button
does not lead to a preferences screen and at the
The start and pause screens SHOULD also start'menu the preferences screen currently does
User.UL.8 |feature controls for a preferences screen. nothing.
User.UL9 |MUST display trains on screen. We have textures representing the Player’s trains.
User.UL.10 |MUST display hazards on screen. NOT IMPLEMENTED. SEE ARCHITECTURE DOC.
Stations have textures and are labelled with their
User.UL11 |MUST display stations on screen. associated city.
Routes are represented with lines which are visible
User.Ul.L12 [MUST display routes on screen. on the map.
Player fuels and gold are located at the bottom of
the screen on the left hand side. Selecting show
cards will reveal user cards and player trains are
User.UL.13 [MUST display player resources on screen. displayed on the map.

23

