Component Design and GUI Report

TEAM HEC
Table of Contents

1. Introduction
1.1. Report Structure
1.1.1 GUI Style
1.1.2 GUI Structure
2. Main Menu
2.1 Main Menu GUI
2.2 GUI design
Example Structure of StartMenu Ul Sprites and SpriteButtons:
3. Game Screen
3.0 Why the Underground Design?
3.1 Starting Sequence
3.1.1 Selecting Stations
3.1.2 Selecting goals
3.1.3 Design Choices
3.2 GameScreenUl
3.2.1 Ul Design
3.2.2 Design Choices
3.3 Map Manager
3.3.1 Ul Design
3.3.2 Map Manager Structure
3.4 Goal Menu
3.4.1 Ul Design
3.4.2 Goal Menu Structure
3.5 Shop

3.5.1 Ul Design
3.5.2 Shop structure

3.6 Card Hand

3.6.1 Ul Design

3.6.2 Game Card Hand Structure
3.7 Pause Menu

3.7.1 Ul Design
3.7.2 Pause Menu Structure

3.8 Train Depot
4.1 Asset generation

4.2 Usage

1. Introduction

1.1. Report Structure

This report will describe why we designed the graphical user interface (which will henceforth be referred to as GUI)
our game the way we did and in brief describe how we did it. We distinguish between GUI style - the look and feel
of the GUI and GUI structure - the methods behind how the section works. We will use notation throughout for
methods and classes for example: getStartMapObj(). If we do not include parameters that does not mean they
don’t have none however if we think the parameters are important to explain we shall include them.

1.1.0 In General...

The project in general has two “ends”. The front, which deals with Ul, and the back, which handles the game object
and player data.

GameScreen is the main class in the Ul everything comes from there. All the sections are handled with managers
that create the Sprites, Labels and SpriteButtons that make up the Ul.

Goal Menu and Player Goals handle goal actors that represent the Goal objects in the backend.

Map Manager handles the map objects and interacts deeply with the backend WorldMap.

Card Hand is the handler for the 7 cards your player is allowed the CardActors represent Card objects in the
backend.

Game_Shop uses the Shop in the Player package to get the values it need and implement purchases and sells
done in the shop UL.

GameScreenUl simply handles the gamescreen Ul elements and only uses the backend for current player name,
score and resources values.

1.1.1 GUI Style

With the game being a railway game already, we decided that the railway style would be carried throughout the
graphic design of the game. In particular we were influence by ticket design and underground maps, with the map
taking on an abstract underground map style. We also employed skeuomorphism (making a design like the
original thing) when designing the goals as we designed the goals to look like train tickets. This helps to make the
goals seem familiar. Gill Sans was the typeface we decided to use throughout, as it is visually very similar to
Johnston, the font used in the London Underground’s branding.

1.1.2 GUI Structure

The structure of the overall design has LocomotionCommotion class as its base. This class switches between the
StartMenu and GameScreen. The table below explains the basic high level structure of the program.

Locomotion Commotion
Start GameScreen
Menu
start Starting GameScreenUI Map Goal Menu & Player Shop Card Pause Train
Scene Sequence Manager Goals Hand Menu Depot
Section : 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8

GameScreen uses the above 8 other classes: these classes create all the Ul elements in their corresponding
groups.

Starting Sequence: This class shows the get started windows that take the user through the first few steps,
selecting a station each and then opens up the rest of the game and starts the player’s turn.

GameScreenUl: This class is the group of game screen objects like the top bar, resources bar and the in-game
options. The GameScreenUl also handles the resources, score and player turn labels.

Game_Map_Manager: Used to group all the routing button and labels, the Train and station information windows
and handle entering routing mode.

Goal_Menu & Player_Goals: Goal menu is used for getting new goals. PlayerGoals are the goals that a player
currently owns.

Shop: A Shop Ul for buying and selling resources
Card_Hand : Card hand is used to hold the player’s card actors. This also allows the user to use the cards.
Pause_Menu: A simple menu that allows user to resume, save and exit game and change preferences.

Train_Depot:The Train depot has not yet been implemented. But should be used for buying and upgrading trains.

2. Main Menu
2.1 Main Menu GUI

The main menu consists of four options, “New Game”, for starting a new game; “Load Game”, for opening
previously played games; “Preferences”, for changing the settings for the game; and “How to Play”, a user guide
on how to play the game.

Clicking on one of them takes you to that screen by panning the camera along the edge of the line drawn and
stopping at the new page. This creates a smooth transition between screens and makes the menu more visually
pleasing. Each of these screens have a button to take you back to the main screen, with “Exit Game” closing the
game.

The main path for the users into the game is moving to the “New Game” screen. Here they are presented with a
variety of user options: game mode, player names and number of turns. Options that aren’t selected are semi
transparent, with selected options being a solid colour so it’s obvious what the user has selected. The text fields
have Playerl and Player2 prewritten to prompt them to fill them in.

The “How to play” menu option takes the users to a screen where they are walked through how the game works.

BACK

LOCOMOTION NEW GAME
GAME MODE:
COMOTION —

pLaver oNE NAME: [
pLaver Two Nave: BRI

NEW GAME O

LOAD GAME O NUMBER OF TURNSS:

PREFERENCES O

How TO PLAY O GO :

EXIT GAME O ..I.‘.

2.2 GUI design

The StartMenu has everything on one plane. There is the central view (Main Menu - Title), moving up the camera
gives you the New Game view, left gives how to play view, right gives load view and down gives you the preferences
view. The animations are done by starting an action that moves the camera every render until a distance has been
reached where the act finishes.

Example Structure of StartMenu Ul Sprites and SpriteButtons:

Section Name Type Action (onClicked())
Lines Sprite none
Title Sprite none
NewGame SpriteButton Move Camera Up to NewGame
Main LoadGame SpriteButton Move Camera Right to LoadGame
Preferences SpriteButton Move Camera Down to Preferences
HowtoPlay SpriteButton Move Camera left to HowtoPlay
ExitGame SpriteButton Exits Game

As you can see we have Sprites that don’t have any action and we have SpriteButtons that have onClicked() actions.
All the game elements follow this formula. Sprites and SpriteButtons are explained in the Architecture document.

3. Game Screen

3.1 Starting Sequence

3.1.1 Selecting Stations

Upon starting a new game the first player is instructed to select their start station. When they mouse over a station,
the station circle texture is toggled to a larger size, which helps to make it clear that they are interactive and which
station they are currently selecting. When pressed, the users are presented with overlay information when
mousing over each station to inform them of the cost of the station and what resources it generates. After it is
selected, the station is highlighted on the map by the circle being stroked by the player’s colour. The different
stroke colour helps the players distinguish which stations they own, which are owned by the other player and
which are completely unowned.

P

GET STARTED: WARSAW

500 * ‘Ii':luclear

COST

50

SELECT

Rob please select your start station!

CLICK TO CONTINUE

!
O Q

LONDON

@

3.1.2 Selecting goals

GOAL SCREEN it"
Rob 0 SCORE 0 Caleb syewrwrn They are then prompted to select a goal from the

goal screen to add to their list of goals.

[STOC’-KI:OLMI [HeLsinki]
It is important the users are shown how to select
goals as this is a key part of the game and as

such they are pointed to the goal screen when

GET STARTED: = .
starting a new game.
null select a new Goal from the goalScreen ‘

[:l CLICK TO CONTINUE

3.1.3 Design Choices

The starting sequence is used to guide the user through the initialisation of the game. We need each player to
select a station and highlight that the core of the game is to select goals from the goal screen by giving them a
pointer in the right direction.

3.1.4 Ul Structure
For the GetStartedWindow we use two custom textures. The first is just a GET STARTED box and the second
includes the pointer. The starting sequence follows the following list of actions:
1. Askplayer1to select user
a. 1sttrainisselected
2. Ask player 2 to select user
a. 2ndtrainis selected
3. We call the start game methods in GameScreen (which creates a core game) and then
Game_StartSequence (which handles the Ul) .
4. Display the GetStartedWindow with the pointer to tell the current player to selected there first goal.

3.2 GameScreenUl

GOAL SCREEN Rob 0 SCORE 0 Caleb

[osio] [sTockHoLm]

r\ £\
)
GET STARTED:

"
Caleb select a new Goal from the Goal Screen! FU
CLICK TO CONTINUE

:
|
= © 50 & 200 ¥ 20 % 300 @ 20 CARDS: AVAILABLE o SHOW CARDS

3.2.1 Ul Design

Player’s score is displayed on the top bar at the center. When players have completed all the actions they wish to
do on their turn, the can end their turn by pressing the “End turn” button found in the bottom right corner, below
where the person whose turn it is is displayed again. You can access the Train Depot, shop and map info by
pressing the buttons left of the end turn button. The player’s current fuel, money and cards are displayed at the
bottom of the main game screen:

= 50 @& 200 3 200 % 300 @ 20 CARDS: AVAILABLE 0 SHOW CARDS

3.2.2 Design Choices and Ul Structure

All the game screen options are at the extremities of the screen because users find that the norm, users know that
the top bar is generally where you find settings or pause buttons and this formula for formatting the game gives us
the most space for us to put our ‘game interface’ in our case this is our map.

GameScreenUl initialises all these elements and manages the resource labels keeping them updated using its
method refreshResources(). All the Ul is built up of Sprites, SpriteButtons and Labels. Icons were used to
represent money and fuel type rather than text as they would have taken up more room. Many of the user
interface buttons toggle the visibility of more information or other interactive screens. The reason for this is that
the user interface would be very small and cluttered if everything were displayed at once making it difficult to
understand. It would also reduce the area of the map, which is the main part of the interface and with smaller user
interface elements they would be harder to click on them as well.

3.3 Map Manager

3.3.1 Ul Design
Once goals have been selected, the user then must route a train to its destination.
OSLO | STOCKHOLM
® The user assigns a goal to a train by clicking on an available train O O J

® A menu appears showing train information, with a “Plan Route” button
allowing you to enter routing mode for that specific train.
® Routing Mode is then entered, changing the appearance of the screen to a dark
mode, making it explicitly clear.
O Theend turn button is also hidden so it cannot be clicked on while in
routing mode to prompt users to finish their route first
O Inrouting mode players cannot click on other trains
® Users can then select adjacent stations which have been toggled to use a
slightly bigger texture
O Thisimplies they are clickable.
® Clicking an adjacent station will attempt to add the connection to your
existing route, if you can afford the fuel to get there
O If not, a prompt window appears displaying how much more Fuel they
need to add the connection.
O Ifthey do have sufficient fuel, the amount of fuel needed is deducted
from the total at the bottom of the screen and the all the route labels
are updated

()
()
()
()
()
o
PrAGUE
@

® White circles are then added to highlight the route taken by the train through the map so when the user
exits and re-enters routing mode, the preplanned route is clearly visible
O Ared circle then passes over every individual white one to indicate the route direction.
® If the user presses undo, the latest connection is removed from the Ul and the labels updated
O Ifthe train has already started a connection, it is impossible to remove from the route past the
trains position
@ If the user presses cancel, the Ul removes as many connections as possible up to the trains position
O Thisisthe same as a repeated undo but a lot quicker
® Ifthe user presses abort, the Ul removes all connections and moves the train back to the last MapObj it
passed - losing the player the progress they made
O This could be used for when a train collision occurs and the train has to move back to the previous
station or junction
® Confirm button exits routing mode, allowing the player to click on their other trains again or click the end

turn button
IN WARSAW

Diesel Weasel

The routing mode window also contains information about
the length of a route, how much of the route is left, and how
much fuel the route will cost and which type of fuel it will be.
This allows the user to make tactical decisions about the
shortest route to take and how much resources they’ll use l
with this route. It also gives them an indication of how long

it’ll take to reach the destination with the route remaining. Fj

Route length: 183.8
Route remaining: 183.8
Fuel cost (Oil): 74

& -nn a2

_ 1ann

3.3.2 Map_Manager Structure

Game_Map_Manager handles the map itself, the train and station information windows and the routing Ul.
Map_Manager has methods like enter/exitRoutingMode and move/hide/showinfobox.

3.4 Goal Menu
3.4.1 Ul Design

The goal screen provides them with a list of goals to be selected from, up to three of which can then be chosen.
Free spaces in the selected goals are represented via transparent tickets to imply that new goals can fill those
spaces.

As previously mentioned the goals take the form of tickets. This follows the theme of trains and displays
information you would find on a real rail ticket such as start and end destinations, additionally we have reward
value, train type, start date(a deadline turn to start the goal) and route (cities the train must go through). This
goals interface can be brought up later on upon the completion of goals in order to select new ones. Currently
active goals can be seen by pressing the ticket button rather than the goal screen button.

GOAL SCREEN

P

GOAL SCREEN

Rob 0 SCORE 0 Caleb

Goal Screen

Your Goals

New Goals

aaaaaa

3.4.2 Goal Menu Structure
The Goal Menu uses 3 main classes: GoalMenu, PlayerGoals and Goal Actor. Goal Actor represents every ticket
object in the game. PlayerGoals are the GoalActor’s owned by the player, Goal Menu manages the screen and the

7

9 new goals (tickets). The text on the Goals (tickets) are all Labels. They are placed together with two different
indices an index 1-9 for GoalMenu and 1-3 in playergoals; the labels and the goals are all created when the game
is run and to change them all you need is there index.

3.5 Shop

3.5.1 Ul Design
pr———EE=E Each turn the player receives resources from their station(s) and from
SHOP completing goals, as well as spending fuel with train movement.
TRAIN There is also a shop where resources can be bought and sold (for 70%
BUY SELL of the buying price), which can be accessed by pressing the dollar
STORE symbol next to the end turn button.
3.5.2 Shop structure
The Shop has 3 sections: Buy, Sell and TrainStore (unimplemented).
Shop: Buy >0 The items that you can buy/sell are given a class each. This was done
" Coa N (O ((Electricit? because each item them has a picture, quantity and cost labels, add
T ‘ AN and minus buttons and buy/sell button. When you click the buy or
100 [2) 10 5] 0 [sell button it interacts with the shop class to add or subtract
resources and gold from the current player. The same images are
Nuclear) @ Trains D used as at the bottom of the menu for consistency and player
@ ’:g familiarity. The number of resources is still visible at the bottom of
100) - the page which allows users to see how much they have bought and

\Eewm o) T) s)

how much they have available to sell.

3.6 Card Hand

& 50 3 0 w WD w0

3.6.1 Ul Design

The card hand can be accessed by clicking show cards at the bottom of the screen. This displays the cards the
current player has, up to 7 cards are displayed at once. Clicking on an individual will move the card up so it can be
seen more clearly and a use card button will appear above the card, clicking this button will consume the card and
carry out the appropriate effect. Again the images used for resource cards use the same images as the resource
symbols for consistency.

o cARD)

G Electric [wewa
Oil Card d | Card 0il Card d L port —otor M card
~ ard fipes
.; « TP

\\ 691 @ 447 CARDS: AVAILABLE 7 SHOW CARDS 447 CARDS: AVAILABLE 7 SHOW CARDS

O O

3.6.2 Game_Card_Hand Structure

The card Ul is based in the CardHand and the Card_Actor class. Card_Hand creates the 7 cards (blank) and puts
them in their corresponding slots and you can add and remove cards using its addCard() and useCard() methods.
When you select a card it moves itself up and any others down, usecardbtn also appears and pressing it will
implement the useCard() method. This allows you to preview the card before using it and allows more cards to be
displayed in a smaller space. Cards are easily distinguishable due to their colours.

8

3.7 Pause Menu
3.7.1 Ul Design

The in-game menu can be accessed by pressing the menu icon in the top right of the screen. This pauses the game
and allows the user to return to the main menu as well as providing similar options to the main menu:

A dark backdrop is also added and layered on top of all the other buttons
so they are no longer clickable within the pause menu. This also helps to
make the pause menu stand out.

3.7.2 Pause_Menu Structure

The class initialises the Sprites and SpriteButtons. Resume Game goes
back in game, Save Game will save the game instance, Game Setting will
open a further menu where the user can change the setting and MainMenu
SAVE GAME will set the screen back to the startScene.

GAME SETTINGS

3.8 Train Depot

The Train depot has not yet been implemented. Initial plans for the train depot are to provide a screen where
players can purchase more trains and upgrade their current trains with better speed and fuel efficiency. Currently
the train depot would be accessed from the shop or directly from the train depot button above the shop button.

4.1 Asset generation

4.1.1 Map Assets

The layout and textures for the map were drawn in Sketch 3, a vector graphics drawing package, to ensure that
assets could be exported at a variety of sizes without impacting upon the quality of the assets produced. During
the prototyping phase a more abstract subway-map like style was chosen.

Circles represent stations, with the station label above circle to let the know
PRAGUE . L . . .
which station it is. Junctions are represented with a square. Connections
between different places are denoted by different coloured lines, which have an
| in game function when buying stations. By aligning stations to a grid rather than

matching them perfectly to where they are geographically the lines could be

constrained to 45° angle, and the line between any two adjacent places does not

BERN change angle. By doing this it made animation of trains between cities easier as
they always had a straight path that could be worked out using just the start and
end points of the movement using a single vector between them, rather than
having to calculate paths along irregular or curved paths using bézier curves.
This implementation can be found within the architecture document in which the
train animation and position is calculated by scaling a vector between two
adjacent MapObjs.

When exporting the map it was separated out, with the station labels and lines rendered and exported together as
one layer. The station circles and junction squares were then exported to a single circle and square, with larger
versions for hover states. Stations were also exported with a colour stroke, representing when the station is owned
by a player (blue for Player 1, orange for Player 2).

One of the issues we encountered was that the assets had initially been
drawn at a size that did not completely fill the screen. This was easily
fixable because they were produced as vectors, so the whole map could be
exported at 1.3x the resolution. The hover states could also be exported at JUNCTION
a larger size to emphasise them more.

O UNOWNED STATION

o PLAYER | STATION

Images were exported in the .png format to conserve their transparency.

4.1.2 Other Assets (O PLAYER 2 STATION
All other asset were created in Adobe Illustrator which again uses vector

graphics and are exported as individual assets in the png format. » PLAYER | TRAIN
4.2 Usage PLAYER 2 TRAIN

The background of the map contains just the lines and station labels. The

station dots all use the same texture and can be placed onto the map. The

reason for keeping them separate is that it allows for the stations to alter their appearance on hover or purchase,
whilst only needing a small set of images, rather than a unique one for each station or leaving the appearance
unchanged. This also provides a click area for the user interaction. Trains are similarly rendered separately above
to allow for movement and animation between stations.

4.3 In Game Screens

The in-game screens are the GoalMenu, PauseMenu, Shop and TrainDepot. These are groups of actors that we
open and close. When we open PauseMenu for example we run through a loop of the actors in that section and
make them all visible and because they are instantiated after main game screen they appear on top of everything.
For us to be able to do this we fetch a stage start index and a stage end index, which are set when we create the
group. This method of doing this was established very early in the program development and there are better
ways, less messy ways to do this. We recommend using the “Scene” methods used in StartMenu. Scenes are
explained in the Architecture Document, this way of doing this is cleaner however we did not have time to change
this ourselves as it was low priority.

5.0 User Requirements not met

User.Ul.10 was the only user interface requirement not satisfied which is due to Events not being implemented. A
hazard refers to anything that would cause a player to have to suffer a penalty or re-route a train. At the present
time a player will never face a hazard hence why it was not added to the user interface.

10

