Architecture Document
TEAM HEC

1.0.0 Introduction
1.1.0 The libGDX Library
1.2.0 In General...

2.0.0 Packages
2.1.0 Map - com.TeamHEC.LocomotionCommotion.Map

2.1.1 MapObj
2.1.2 Connection
2.1.3Line
2.1.4 Junction
2.1.5 Station
2.1.6 StationListener
2.1.7 WorldMap
2.2.0 Train - com.TeamHEC.LocomotionCommotion.Train
2.2.1Train
2.2.2 CoalTrain, OilTrain, ElectricTrain, NuclearTrain
2.2.3 Route
2.2.3.1 - Adding and removing a connection
2.2.3.2 - Moving the Train
2.2.3.3 - Calculating Train position
2.2.3.3 - How to implement collisions
2.2.3 - Route Listener
2.2.4 - SpeedUpgrade
2.3.0 Player - com.TeamHEC.LocomotionCommotion.Player
2.3.1-Player
2.3.2-Shop
2.4.0 Goal - com.TeamHEC.LocomotionCommotion.Goal
2.4.1 - Goal Factory
2.4.2 - Goal
2.4.3 - Special Goal
2.4.4 - Dijkstra
2.4.4.5 initialiseGraph()
2.4.4.5 LookupNode()
2.4.4.6 ComputePaths()

2.4.5 - Node, Edge
2.5.0 Ul Elements - com.TeamHEC.LocomotionCommotion.Ul Elements

2.5.1 - Sprite
2.5.2 - SpriteButton
2.5.3 - WarningMessage
2.5.4-7 Asset Managers
2.5.4 - Game PauseMenu
2.5.5-Game Shop
2.5.6 - Game_StartingSequence
2.5.7 -GameScreenUl
2.5.8 - Game TextureManager
2.6.0 Resource - com.TEAMHEC.LocomotionCommotion.Resource
2.6.1 - Resource
2.6.2 - Fuel
2.6.3 - Coal, Oil, Electric, Nuclear
2.7.0 Card - com.TEAMHEC.LocomotionCommotion.Card
2.7.1 - Card
2.7.2 - CardFactory
2.7.3 - ResourceCard
2.7.4 - CoalCard, QilCard, ElectricCard, NuclearCard
2.7.5 - GoFasterStripesCard, TeleportCard
2.7.7 - Game_CardHand
2.8.0 Scene - com.TEAMHEC.LocomotionCommotion.Scene
2.8.1 - SceneManager
2.8.2 - Scene
2.8.3 - StartMenu
2.9.0 Game - com.TEAMHEC.LocomotionCommotion.Game
2.9.1 - CoreGame
3.0.0 Improvements
3.1.0 Goal Factory Improvements
3.2.0 Train and Station upgrades
3.3.0 Gameplay
3.4.0 Saving and Loading
3.5.0 Events
4. User Requirements We Have Not Managed To Meet

1.0.0 Introduction

In this document we explain how every class in each package is implemented and how they are linked together.
We will use notation throughout for methods and classes for example: getStartMapObj(). Parameters are
generally omitted for brevity, but are included when they require explanation. Attributes are generally in italics.

If you haven’t set up the project yet and are looking for the setup information please check our GitHub wiki.

It may be useful to access the JavaDocs for our game, for a more detailed description of structure and specific
definitions. It can be accessed at the following link : LocommotionComotionJavaDocs

The backend and the Ul frontend are connected in a variety of ways ia the use of singleton classes for large screens
such as shop or within the backend creation itself, such as Station Ul elements that are created within a Station or
Train constructor when needed. In this document, we go through each package individually, explaining the key
concepts of their implementation and how they link to each other the UlI.

1.1.0 The libGDX Library

Our game uses the libGDX library which provides us a framework that allows for easy creation and organisation of
asset. We use the Actor class extensively throughout our implementation (Sprite extends Actor, see Sprite
documentation within this document). Additionally to giving us a way of representing assets it allows us to group
them on Stages and Screens. libGdx can also allow us to deploy our game to Android, iOS and web platforms, but
we did not implement this as it was not required by the brief.

1.2.0 In General...
The project in general has two “ends”. The front, which deals with Ul, and the back, which handles the game object
and player data.

CoreGame is the main class in the back end. It keeps track of the Player objects and monitors the current state of
the trains and stations in the WorldMap.

Player has resources including Gold, Fuel and Cards. Fuel is used by the Player’s Trains to keep them moving,
Gold is spent in the Player’s Shop and on Station’s. Player also has Goals generated from the GoalFactory.

Goals define objectives for the Player’s Trains to achieve. They have set start and end Stations.
Cards are generated in the CardFactory. They create random effects to benefit the player who owns them.

WorldMap is a singleton defining the stations and junctions. All of which are MapObjs, characterised by their Ul
Actors. MapObjs can be connected as defined in a Connection instance.

To read in more detail about the front end see the Graphical User Interface document.

2.0.0 Packages

2.1.0 Map - com.TeamHEC.LocomotionCommotion.Map

The backend of the map implementation defines Stations and Junctions, their adjacent connections and the lines
they belong to. These are all initialised within the WorldMap singleton.

2.1.1 MapObj
The superclass MapObj is extended in both Station and Junction. The objects contain key
information used to calculate the relative position of the station/junction in the map Ul and are
used to define connections between each other. MapObj contain x and y coordinates to
(Monaco] [Bern) indicate their position, a Game_Map_MapObj Ul element for drawing the MapObj to the screen
O\ and an ArrayList<Connection> of adjacent connections to that MapObj.

http://www.google.com/url?q=http%3A%2F%2Flibgdx.badlogicgames.com%2F&sa=D&sntz=1&usg=AFQjCNEqYgha-PWKDRLLsELnGnjD5xX_Jw
https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FCallumHewitt%2FLocomotionCommotion%2Fwiki%2FImport-Project&sa=D&sntz=1&usg=AFQjCNHDUJw5nS0PYWHyRzudto2HsbHSFg
http://www.google.com/url?q=http%3A%2F%2Fcallumhewitt.github.io%2FLocomotionCommotion%2Fdoc%2Foverview-summary.html&sa=D&sntz=1&usg=AFQjCNEyFeqyfGtI6vT5q1em_xGwmYcmtw

2.1.2 Connection

A connection contains information about two adjacent MapObj. They define the route a train can take from one
MapObj to an adjacent one. The constructor contains two MapObj parameters, startMapObj and endMapObj.
Using their coordinates, the difference between them is calculated and a vector is created to indicate the direction
and distance (length). The vector is then normalised to a unit length 1. These can all be accessed using getters
such as getStartMapObj() and getDestination() for endMapObj.

This allows a Train to calculate its position by using the coordinates of the MapObj it is
leaving and the vector for the connection it is travelling down. A train can scale the vector
by the length it needs to travel. We currently use the Train speed for this. Connections are
also used to define a train’s Route, which is an ArrayList<Connection> for the train to
follow. The vector is also used to create a series of white blips to indicate a connection on
the Ul. The scaling of this vector allows us to place them a set distance apart. Ared blip can then iterate through
the white blips, indicating direction.

2.1.3 Line
An enum of possible Line colours (Black, Blue, Brown, Green, Orange, Purple, Red, Yellow).

2.1.4 Junction
Extends MapObj and is initialised in WorldMap. It creates a specific Game_Map_Junction Ul element with its own
coordinates.

2.1.5 Station

Extends MapObj, creating a Station with a name, Resource type, resource output, cost and coordinates. A station
can be purchased within the Player class and its owner changed using setOwner(Player). Every station setsup a
listener notification detected by StationListener. You can add a listener using register(StationListener). Upon a
station being purchased all listeners are notified, allowing appropriate changes to be made such as updating Ul
elements. In WorldMap, all of the stations and junctions are created and their connections are initialised within
the constructor.

Station uses a Line array of size 3 to store which lines it is on. This allows stations to be on 1 to 3 lines
simultaneously (this can easily be changed by editing the size of the line array). When creating a station if a station
is on less than 3 lines the remaining spaces in the array must be assigned the last unique colour in the array. For
example a station on the blue and red line could have array [Red, Blue, Blue] or [Blue, Red, Red] the order is
irrelevant so long as the second space is repeated. This is to simplify how Player checks a stations lines, by
allowing it to loop through the line array if it is not the first element it compares the current line colour to the
previous line colour only using the line colour if is different to the previous colour.

2.1.6 StationListener
Contains an ownerChanged(Station, Player) method which, ifimplemented by a class and registered
appropriately within Station, can be used to make appropriate changes to the Ul and other elements.

2.1.7 WorldMap
A singleton class which initialises all the Station and Junction objects, with hard coded coordinates and
parameters.

ine.0range},
.Brown},

» PRAGUE, BERN});

The ArrayList<Connection> for each MapObj is then
initialised using createConnections(MapObj,
MapObj[]).

[1 connection)

3 1 < connection i++)

nnections.add(Connection(map0Obj, connection[i]});

2.2.0 Train - com.TeamHEC.LocomotionCommotion.Train

2.2.1 Train

An abstract superclass for all Train types. The Train class creates a specific train with attributes defined in its
constructor. These include the type of fuel the train uses, its base speed, speed modifier and its value.

The train is also assigned an owner Player, a Route and an associated Ul blip, Game_Map_Train. The Route
constructor is passed the starting MapObj of the train.

The train can be upgraded using the TrainUpgrade class (only partially implemented) which can alter the trains
speedMod and fuelPerTurn to improve speed and fuel efficiency, in which a lower fuelPerTurn attribute can
increase the distance a train travels using the same amount of Fuel. Train upgrades can be added using the
addUpgrade(), and removeUpgrade() methods in TrainUpgrade which can be overwritten by any subclass to
perform unique upgrades. If you want to alter the route of the train, access the train’s path attribute. A train
progresses along its assigned path by as much as its total speed using the moveTrain method, which allows the
Game_Map_Train sprite to update its position for animation.

2.2.2 CoalTrain, OilTrain, ElectricTrain, NuclearTrain
Here, Train attributes such as speed and fuelType are hardcoded into the super constructor call of each subclass,
with CoalTrain being the slowest but the cheapest to run and NuclearTrain being the fastest and most expensive.

2.2.3 Route

When this Route object is instantiated, a MapObj, representing the starting position of the train upon creation, is
passed into the constructor. This is saved in the currentMapObj attribute of Route to track the MapObj the train is
at or last passed through. The route the train follows is stored in ArrayList<Connection> path. The train’s position
within this ArrayList and its progress for that Connection is tracked using the attributes route/ndex and
connectionTravelled.

2.2.3.1 - Adding and removing a connection
AMSTERD gecq every MapObj has an ArrayList of adjacent connections created in WorldMap.
The method getAdjacentConnections() looks within the existing
ArrayList<Connection> path. If path is currently empty, it returns the
ArrayList<Connection> from the currentMapObj. If not, it returns the ArrayList of
connections from getDestination(), the last connection in the route ArrayList.

These adjacent connections can then be added to the path using addConnection()
and removeConnection(). These methods also contain code to highlight the route
on the Ul which will be covered in the Ul report. Using this method means only
adjacent connections to the current route can be added and also allows us to
toggle the state of stations if clicked within the Ul.

2.2.3.2 - Moving the Train

As stated earlier, we can track the trains position within the ArrayList<Connection>
using the routelndex to refer to the index of the connection the train is currently on,
and the connectionTravelled to refer to how far down the length of that connection
the train has progressed.

We can move the train by a specific amount along its route using the update(moveBy) method in which we add
the moveBy value to the connectionTravelled attribute.Now if the new connectionTravelled value exceeds the
length of that current Connection, we can progress onto the next Connection in the Route by increasing the
routelndex by 1 and progressing down the new connection by how much it exceeded the previous as follows:

Here, the ArrayList<Connection> route contains (Dublin>London), (London>Paris) and (Paris>Monaco)
connections and the train has moved down the connection by 70.
® routelndex =0 as itis the first connection in the Route.

® connectionTravelled = 70 (which < connectionLength 130 so no overflow) AMSTERD/

If we take another turn the train moves another 70

LONDON PARIS | and passes london, overflowing by 10 (70 + 70 > 130,

therefore 140 - 130 = 10). We therefore move onto

O e 0 . the next connection by increasing the route index:
A ® routelndex=1

® connectionTravelled =10

If the routelndex exceeds the route.size(), we’ve reached the end of the route and can clear the route ArrayList,
resetting the routelndex and connectionTravelled to zero.

2.2.3.3 - Calculating Train position
As connections contain vectors and we know which connection we’re currently on using the routelndex. We can
calculate the exact coordinates of the train by scaling the direction vector in the connection by the
connectionTravelled variable and adding it to the vector of the startMapObj of that Connection. This is done in the
getTrainPos method, which returns a Vector2 of the coordinates:

Vector2 pos = new Vector2(startMapObj.x, startMapObj.y);

Vector2 vect = route.get(routelndex).getVector().cpy();

vect.scl(connectionTravelled);

pos.add(vect);

2.2.3.3 - How to implement collisions

As the connections have vectors we should be able to detect collisions by adding the vectors that represent the
two trains together and checking for 0. This would imply they are travelling in opposite directions. Similarly using
the isReverseOf method which returns true if a connection is the reverse of another (London>Paris) and
(Paris>London).

2.2.3 - Route Listener

An interface for classes to implement, contains a stationPassed(Station, Train) method which notifies listeners
that a Train has passed a station while on its route. This allows us to check the owner of the station compared to
the owner of the train and charge the player a station tax if necessary. It also allows us to complete Goal validation
in which a train has to pass through a series of stations to receive an award.

2.2.4 - SpeedUpgrade
Extends TrainUpgrade, providing constants for price and overriding the addUpgrade() and undoUpgrade()
methods with their new functionality - in this case increasing the speedMod of a train by 10.

2.3.0 Player - com.TeamHEC.LocomotionCommotion.Player

2.3.1- Player

The Player class contains relevant data unique to each player such as name, points, resources, cards, goals, trains,
stations and line data. They are first created in CoreGame and are used throughout the duration of the game.

Fuel resources are stored within a HashMap<String, Fuel>, this allows a quick and easy access to get relevant
information about the player and edit it accordingly using addFuel(String, int) and subFuel(String, int). The
Strings represent the fuel type.

The purchaseStation(Station) method is located in player. The method takes the station to be purchased,
validates that the purchase is legal then calls station setOwner() and subGold() to set the station to be owned by
the corresponding player and adjust the players gold total respectively.

It also changes the players lines[], which is an array of size 8 each slot corresponding to a different colour. It checks
the stations line array and adds one to the player array for each unique colour in the station line array. This array is
used in determining line bonuses, as explained below.

The sellStation method is also located in player however is currently commented out as it is not implemented on
the Ul. The method checks that the player owns the station, removes the lines that the station is from the players
line array, refunds the player 70% of the base value to the player using addGold, sets the station’s owner to null to
signify it is unowned then removes it from the player’s list of stations.

The lineBonuses method is used to calculate how much each stations’ output should be increased by, based on
how much of a line the player owns. For each station the player owns, the method checks each colour of the
station to see how many stations on that line the player owns, then gives a 5% increase using setRentValueMod(),
setValueMod() and setResourceMod(). There is also a check to see if the entire line is owned, this is simply hard
coded and provides an additional increase to the rent, value and resource mods. Rent is not currently charged in
this implementation but can be added at a later date.

2.3.2-Shop

The Shop class takes an instance of the Player class, as each instance of Shop is assigned to one player. Upon
creation, it assigns the received player instance to customer and creates a new instance of CardFactory, passing in
its customer.

buyFuel()takes the fuel type (fuelType) being purchased, the quantity being purchased (quantity) and a boolean
(testCase) to determine if the run is a test case (testCase has to be included as the WarningLabel class will break a
test if it tries to run it, the boolean is used to skip that section). The method then checks if the player has enough
gold to ensure they are making a legal action before calling addFuel(), passing fuelType and quantity, then calling
subGold() passing quantity multiplied by a sell price that is declared in Shop. The sell price passed to subGold() is
dependant on the fuelType passed to buyFuel() . If the player is found to not have enough gold a warning message
will be displayed informing the player that they do not have enough gold (assuming testCase == false).

sellFuel() works almost identically taking the same parameters (fuelType, quantity and testCase) however instead
of checking if the player has the required gold to buy the resources it instead checks if the player has enough of the
resource they are trying to sell to prevent them from performing anillegal action and having negative amounts of
that resource. After confirming the player has enough of the chosen fuelType, subFuel() is called passing fuelType
and quantity. addGold() passies the quantity multiplied by a sell price. Sell prices are declared in the Shop class
for each fuel type, they are also only 70% of the prices used when buying and the sell price used is dependant on
fuelType.

buyCard() takes a boolean (testCase). The method checks if customer has enough gold and if they have less than 7
cards (max hand size is 7). The method then calls cardFactory.createAnyCard() as a parameter for addCard()
creating a new card and adding it to the customers cards.It also calls subGold() passing the price of a card. If they
fail gold and hand size validation and testCase is false then a warning message will be displayed informing the
player they don’t have enough gold or room in their hand.

2.4.0 Goal-com.TeamHEC.LocomotionCommotion.Goal

2.4.1 - Goal Factory

GoalFactory generates all the fields necessary for Goal class. When called, GoalFactory will be passed an integer
value, this integer value represents the turn count of the game. This is so that Goal can show which turn it was
generated on, however this has not yet been implemented due to time constraints. Secondly, it gets the current
instance of the WorldMap and from this populates an ArrayList<Station> called stations with all the stations from
stationList in WorldMap. stations is used in the method newStation() which simply returns a random station
object from stations.

To create a new goal the method CreateRandomGoal() must be called. This function takes no parameters and
returns a Goal object. CreateRandomGoal() first generates two random stations and ensures they are not the
same, then selects the type of cargo and finally generates the reward. The method genReward() takes two
parameters, both Station types, creates a new instance of Dijkstra and utilises the computePaths() method to
find the distance between the start station and end station. The value returned will be a double and will be
rounded to an integer value.

2.4.2 - Goal

New Goal objects are only generated from GoalFactory (outside of tests). The variable special is set to false inside
the initialiser. Three booleans, startStationPassed, stationViaPassed and finalStationPassed, are required to record
how far a train is to completing a goal and as such are set to false during initialisation. The accessors for the
Stations associated with a goal return the name of the station. That is they return a string from Station.getName()
rather than the instance of the generated station that is associated with the created Goal. The assignTrain()
method is used to assign a Goal to a player’s Train once they begin route planning. It also checks to see if the
players train is at the start station, if it is startStationPassed is set to true.The method stationPassed() is called
when a train arrives at any station on its route. It checks if the station the train is currently at is either the start,
intermediate or final station then changes the boolean variable associated with start/via/end. Finally it checks to
see if all stations are passed and calls the function goalComplete() if they have been.

goalComplete() is a simple method that adds the rewards to a players wallet. It then removes itself from a players
goal list and sets all passed variables to false.

2.4.3 - Special Goal

SpecialGoal is used for more interesting goals. These will be outside the mundane Goals. SpecialGoal inherits
from Goal but modifies its special attribute. No special goals are currently implemented but the idea is that they
give more interesting rewards and have more depth to them. For example, a SpecialGoal might be to take tennis
players from three cities to Wimbledon in London. When implemented SpecialGoal should give greater rewards,
perhaps even cards.

2.4.4 - Dijkstra

2.4.4.5 initialiseGraph()

Initialises a graph of Node objects connected by Edges. Each node represents a MapObj and each edge its
Connections. It is used to generate a form to which Dijkstra’s algorithm can be more easily applied for use when
calculating rewards in Goal.

2.4.4.5 LookupNode()

To find the length of a path we need to pass a Node to the computePath() function. Passing a MapObj in will crash
the program. LookUpNode() returns an instance of a node that represents the MapObj passed. We can then use
this to access the node’s minDistance attribute.

2.4.4.6 ComputePaths()

This function uses Node and Edge objects to compute Dijkstra’s algorithm which in turn computes the reward for
a goal. The reward is stored in the minDistance attribute of a destination node. All Nodes now contain the
minimum distance from itself to the start node defined previously.

2.4.5 - Node, Edge

To compute Dijkstra’s algorithm an abstract graph that represents the map is created. To help with this we define
a Node class. A node represents any significant point on a map i.e. stations or junctions. Hence a MapObj is
passed in the constructor.

Every station has a list of stations it is connected too, hence each Node has an ArrayList<Edge> aptly named
edges. Node implements Comparable because Dijkstra uses a priority queue which requires a comparator to
ensure nodes are ordered in a specific way. This makes it easier to order nodes within the queue and also gives
support for the getShortestPathTo() function.

An Edge itself is a standalone object, with two parameters target and weight. target refers to the Node that the
edge points to and the source of Edge is the node object that created the Edge. The weight refers to the length of
the vector between the two MapObj (represented as nodes) as computed inside the Connection class.

Direction is unimportant, hence a node can be considered to only have a next node and not a previous node. For
instance, if it was directed, Node(a).next would be Node(b). and Node(b).previous would not equal Node(a).

2.5.0 Ul Elements - com.TeamHEC.LocomotionCommotion.Ul_Elements
Used to abstract away from the LibGDX Actors and reduce the lines of code by using anonymous Java classes.

2.5.1 - Sprite

Here, the Sprite class extends the Actor class and provides a simple platform to create and display an image on the
screen. The constructor, allows us to quickly create an Actor with desired coordinates and preloaded Texture. If
we want to alter the position or texture of the Sprite, we can simply use the getter and setters within. Once the
Sprite instance has been created, it can then be added to the LibGDX Stage and displayed

2.5.2 - SpriteButton
Extends the Sprite class but adds some functionality including eventlisteners for onClicked(), mouseOver() and
mouseEXxit(). Now if we want to provide functionality for the onClicked() event, we can simply override this
method using anonymous Java classes like such, saving space and coding time.
SpriteButton buttonExample = new SpriteButton(10, 10,
TextureManager.getInstance() .button){

@Override
public void onClicked()
{
// Anything in here is now executed specifically for this button

}

}s
2.5.3 - WarningMessage
Used to display a warning message on the screen. The WarningMessage can be displayed anywhere and will be
layered on top of everything and closed with a click.

Simply call this with the desired message.
WarningMessage. fireWarningWindow(“Assigned Goal to Train!”, “Plan your route”);

-

Assigned Goal to Train!

Plan your route

CLICKTO CONTINUE

2.5.4-7 Asset Managers

The next few Ul elements are structures that create and handle multiple Sprites and SpriteButtons. We have not
got into great detail because they mostly consist of series of instantiations of its Spites and also there is more
documentation in the GUI report document.

2.5.4 - Game_PauseMenu
Ainterface for the user to save the game, change in-game preferences and exit to the start menu.

2.5.5 - Game_Shop

The in game shop is a window that overlays the game screen allowing the user to select between the buy section or
the sell section of the shop. Selecting buy or sell sets all the labels and value to the corresponding modes. The
items (fuel or cards) are collected in single classes because they have so many different features (add, minus and
buy button) in common we just create them once per item and swap between buy and sell.

2.5.6 - Game_StartingSequence
Simply takes users through selecting stations. Allows us to hide elements of the game screen we don’t want the
user using before we have set the stations and initialise the CoreGame.

2.5.7 -GameScreenUl
The game screen Ul manages all the game screen buttons and resource labels.

2.5.8 - Game_TextureManager
A singleton class which is used to store key game image Textures used in the game.

2.6.0 Resource - com.TEAMHEC.LocomotionCommotion.Resource

2.6.1 - Resource
The superclass of resources used by the player such as Fuel and Gold. Contains getters and setters for altering
their value and a string for indicate their type.

2.6.2 - Fuel
The superclass for all fuels, Oil, Coal, Electric and Nuclear - adds the cost attribute to the extended class
Resource.

2.6.3 - Coal, Oil, Electric, Nuclear
Extends Fuel, with each class initialising its cost from Coal to Nuclear in terms of expense and a string to indicate
its type.

2.7.0 Card - com.TEAMHEC.LocomotionCommotion.Card

2.7.1-Card

An abstract class inherited by all subclasses of Card. Contains Player, Texture and name within the constructor so
assign an owner and image to use for each card and an implementCard() method which can be overridden by a
subclass to give specific functionality. implementCard() is used in the Game_CardHand to make the card perform
its action. Shortly afterwards the Ul disposes of the card.

2.7.2 - CardFactory
Used to generate Card instances. The card factory initialises all the different types of Card and adds them to an
ArrayList to group each type together, such as resource cards and magic cards. A CardFactory is assigned a Player

8

in the constructor, which can be null if used within the Shop. The createAnyCard() methods groups all the
ArrayLists together and returns a random one from within the list, while the other createResourceCard() and
createMagicCard() return Cards from within each individual ArrayList.

2.7.3 - ResourceCard
Extends the Card class, overriding its implementCard() method so the player is given a random amount of fuel
depending on the fuelType set. FuelType is passed into it’s constructor along with Player and Texture as before.

2.7.4 - CoalCard, OilCard, ElectricCard, NuclearCard
Extend the ResourceCard class, providing the fuelType accordingly - the constructor parameters only contain the
Player to which the Card belongs.

2.7.5 - GoFasterStripesCard, TeleportCard

Both extending the Card class, these are ideas to implement within the magicCards ArrayList of the GoalFactory
which provide random effects, such as the GoFasterStripesCard which creates a SpeedUpgrade instance upon
being implemented, or the TeleportCard which was designed with the idea in mind of teleporting a selected train
to another position on the map. The framework has been provided but the implementation is incomplete.

2.7.7 - Game_CardHand
Used to implement a players Card hand in the Ul. Gives a platform for the user to view and use their cards - holding
up to 7 cards at once which can be raised up when selected and implemented on click.

2.8.0 Scene - com.TEAMHEC.LocomotionCommotion.Scene

This package was designed to tidy up and refactor the Ul scene management side of the project by creating a
SceneManager and a series of Scene extended classes. Scenes could then be loaded and unloaded and all their
resources and buttons grouped together in a single place, simplifying the process and making it easier to add new
scenes to the project, while providing key methods within the superclass to deal with backend management. The
StartMenu scene was successfully created but the rest of the project proved too time consuming to restructure.
We left the implementation included to provide a platform for following teams to utilise if they wish. We would
strongly recommend using Scene if new screens need to be implemented.

2.8.1 - SceneManager
Assingleton class where all the Scene instances would be instantiated and stored. The currentScene could be
stored and new scene loading could be done within this class.

2.8.2 - Scene

A superclass for other scenes to extend. The Scene class creates everything needed to display Ul Actors on the
screen and provides an Array<Actor> for other scenes to add their Actors too. Methods such as addToStage() and
removeFromStage() could then be used to add Actor instances to the stage to be rendered or their properties
such as setting them touchable or visible could all be altered at once using setVisibility() and
setActorsTouchable().

2.8.3 - StartMenu

An subclass of Scene, the StartMenu initialises all the Ul actors needed within the StartMenu scene, such as all
the buttons and menu navigation resources. These are all added to the Array<Actor> within the Scene class,
which then can be added to the stage calling addToStage() within the SceneManager.

2.9.0 Game - com.TEAMHEC.LocomotionCommotion.Game

2.9.1 - CoreGame

CoreGame is used to control the back end in its entirety. It represents the current game in progress and keeps
track of Player and Map objects. The front end of the application accesses most of its properties through an
instance of this class.

The constructor contains Strings for each Player name, their initial starting stations and the turnLimit set on the
game - these are all created in the StartMenu and this is where the Player instances are created and assigned
their initial resources using getBaseResources().

The class also contains JSON functionality for saving the current game state to later be reloaded if the player quits
mid game. This is outputted to a JSON file which can be formatted on https://www.jsoneditoronline.org/ for

https://www.google.com/url?q=https%3A%2F%2Fwww.jsoneditoronline.org%2F&sa=D&sntz=1&usg=AFQjCNElZVzLDDr-bj_wwwkAYeIafqet0Q

readability. Loading games has not yet been implemented but the saveGameJSON() method currently saves
everything that should be needed to recreate a CoreGame instance. The main challenge will be recreating the Ul.

3.0.0 Improvements

3.1.0 Goal Factory Improvements

There are a flurry of potential improvements for GoalFactory. A lot of features were present during initial
implementation but were removed due to time constraints. An example is rewards. Alongside giving the player a
sum of money they could also receive a Card generated by CardFactory().

At the moment GoalFactory has a hardcoded value for turnCount. We would like to add the turn a goal was
created as a parameter for a created Goal such that it is displayed as the “start date” for a Goal. A feature not used
in the implementation of Dijkstra is getShortestPathTo(). This returns an ArrayList<Node> ordered with the
shortest path to a given node. This could be implemented to show the player the most optimal route for their task.
Currently, GoalFactory does not generate a ‘via’ Station and therefore does not take the intermediate stations
into consideration when assigning rewards. Finally, and possibly most excitingly, very little SpecialGoal code has
been done so far. We would really like to see that developed further in the next generation. We’d love to see lots of
interesting and funny tasks being set.

3.2.0 Train and Station upgrades

There is currently very little code used to upgrade trains and no code for purchasing more trains which contradicts
our original plans, it is a feature that can be easily added. At the moment it is possible to purchase a station and if a
player owns all stations on a line then they receive a larger bonus from each station. However this is not fully
implemented within the GUI and therefore could be improved. On a similar note, owned Stations were designed to
charge rent to another player who lands on that station. Listeners have been set up in the RouteListener, but this
is a feature yet to be implemented. We would also like to be able to sell stations a player currently owns. Whilst it
exists as code and is working it has not yet been implemented in the GUIl and is not accessible by the user.

3.3.0 Gameplay

At the present time the implementation only supports the standard game mode “Turn Timeout”. This contradicts
the design to have two game modes, the second being “Station Domination”. The aim of Station Domination is to
buy as many stations as possible, completing Goals not for points but cash to buy more stations, so the game is
more like monopoly. “Turn Timeout” also needs some work. We currently don’t have a points system and the
game will not end after the turnLimit expires. This will need to be implemented in the next stage.

3.4.0 Saving and Loading

The methods used for saving are fully supported within the game however they are not attached to a button in the
GUI. This would be a simple improvement as a save menu exists in the GUI but has not been assigned to the save
methods. Conversely loading a game has no methods which will need a full implementation.

3.5.0 Events

Unique events within the game that disrupt the regular flow of gameplay or force the player to change their tactics
have yet to been implemented. These could be anything from random monkey attacks, gorillas on the line,
collisions or even just the distribution of randomly given cards or prizes. The implementation of random events
will keep the game fun and refreshing by keeping the player on their toes. Moreover, magic cards were not
implemented. These are cards that can be given to a player that trigger events on the map and can lead to a more
tactical gameplay. Adding these features would be straightforward as it would just require creating subclasses of
Card that trigger events rather than give a player bonus resources.

Events such as collisions have yet to be implemented but the existing framework could be added by checking if
two trains are on the same connection, either using the isReverseOf(Connection) method within the Connection
class, or making use of the vectors available and adding them to see if Trains are travelling towards each other.
The abortRoute() method with the Route class could then be used to send each Train back to their previous
stations, with another possible side effect such as Train repairs or loss of Gold.

Other features could be implemented to prevent collisions, such as a special Card that lasts a certain number of
turns making the selected train immune to collisions or conversely rewarded for colliding with the opposition’s
train. Our existing framework allows the implementation of any of these ideas without too much work within the
backend of the project and provides the perfect platform to expand any of your creative ideas.

10

4. User Requirements We Have Not Managed To Meet

As in any software development we measure progress against the goals we set out at the planning stage of the
development process. Though we have met most of our User Requirements we have not yet met 9 of the 29
requirements. This section will give the reasons why we did not meet them.

Firstly User.GP.2.4, 7.1, 7.2 and 8 were all relating to scoring points. Points are one thing we are not allowed to
implement in Assessment 2. So if you take up this game in Assessment 3 you need to make sure goals give points
as areward and that a player can complete goals to get these points and win/lose/draw the game based on the
points earned.

Secondly we haven’timplemented events yet. This means that User.GP.4 and 6.3 are not met because GP.4 is for
random events and GP.6.3 is for 2 obstacles (other than junctions) which need events to affect the train.

Thirdly we did not meet USER.GP.9 for multiple game modes because it was not a priority and we simply did not
have time in assessment 2 however our game modes are an important USP of our game especially the Station
Domination mode.

Fourthly we have USER.GP.11.1 and 11.2 that are partially implemented. These requirements involve station and
line bonuses that have not been fully implemented.

Finally USER.GP.5.4 the user requirement that says that the player should be able to halt and restart trains whilst
on a route and USER.GP.12.1 the user requirement for upgrading trains were not met again because there was not
enough time and they were not a priority.

11

